Liu Ruifeng, AbdulHameed Mohamed Diwan M, Kumar Kamal, Yu Xueping, Wallqvist Anders, Reifman Jaques
Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
BMC Pharmacol Toxicol. 2017 Jun 8;18(1):44. doi: 10.1186/s40360-017-0153-6.
The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR reporting systems collect information on adverse health effects caused by both single drugs and DDIs. A major challenge is to unambiguously identify the effects caused by DDIs and to attribute them to specific drug interactions. A computational method that provides prospective predictions of potential DDI-induced ADRs will help to identify and mitigate these adverse health effects.
We hypothesize that drug-protein interactions can be used as independent variables in predicting ADRs. We constructed drug pair-protein interaction profiles for ~800 drugs using drug-protein interaction information in the public domain. We then constructed statistical models to score drug pairs for their potential to induce ADRs based on drug pair-protein interaction profiles.
We used extensive clinical database information to construct categorical prediction models for drug pairs that are likely to induce ADRs via synergistic DDIs and showed that model performance deteriorated only slightly, with a moderate amount of false positives and false negatives in the training samples, as evaluated by our cross-validation analysis. The cross validation calculations showed an average prediction accuracy of 89% across 1,096 ADR models that captured the deleterious effects of synergistic DDIs. Because the models rely on drug-protein interactions, we made predictions for pairwise combinations of 764 drugs that are currently on the market and for which drug-protein interaction information is available. These predictions are publicly accessible at http://avoid-db.bhsai.org . We used the predictive models to analyze broader aspects of DDI-induced ADRs, showing that ~10% of all combinations have the potential to induce ADRs via DDIs. This allowed us to identify potential DDI-induced ADRs not yet clinically reported. The ability of the models to quantify adverse effects between drug classes also suggests that we may be able to select drug combinations that minimize the risk of ADRs.
Almost all information on DDI-induced ADRs is generated after drug approval. This situation poses significant health risks for vulnerable patient populations with comorbidities. To help mitigate the risks, we developed a robust probabilistic approach to prospectively predict DDI-induced ADRs. Based on this approach, we developed prediction models for 1,096 ADRs and used them to predict the propensity of all pairwise combinations of nearly 800 drugs to be associated with these ADRs via DDIs. We made the predictions publicly available via internet access.
多种药物的广泛使用增加了药物相互作用(DDIs)所致药物不良反应(ADRs)的发生。然而,此类反应在临床药物研发研究中通常未被观察到,因为大多数研究聚焦于单一药物治疗。ADR报告系统收集关于单一药物和DDIs所致不良健康影响的信息。一个主要挑战是明确识别由DDIs引起的影响并将其归因于特定的药物相互作用。一种能够对潜在的DDI诱导的ADRs进行前瞻性预测的计算方法将有助于识别和减轻这些不良健康影响。
我们假设药物 - 蛋白质相互作用可作为预测ADRs的独立变量。我们利用公共领域的药物 - 蛋白质相互作用信息为约800种药物构建了药物对 - 蛋白质相互作用图谱。然后我们构建统计模型,根据药物对 - 蛋白质相互作用图谱对药物对诱导ADRs的潜力进行评分。
我们利用广泛的临床数据库信息构建了可能通过协同DDIs诱导ADRs的药物对的分类预测模型,结果表明模型性能仅略有下降,在训练样本中有适量的假阳性和假阴性,经我们的交叉验证分析评估。交叉验证计算显示,在捕获协同DDIs有害影响的1096个ADR模型中,平均预测准确率为89%。由于这些模型依赖于药物 - 蛋白质相互作用,我们对目前市场上有药物 - 蛋白质相互作用信息的764种药物的两两组合进行了预测。这些预测可在http://avoid-db.bhsai.org上公开获取。我们使用预测模型分析DDI诱导的ADRs的更广泛方面,结果表明所有组合中约10%有可能通过DDIs诱导ADRs。这使我们能够识别尚未有临床报告的潜在DDI诱导的ADRs。模型量化药物类别之间不良反应的能力还表明,我们或许能够选择使ADR风险最小化的药物组合。
几乎所有关于DDI诱导的ADRs的信息都是在药物批准后产生的。这种情况给患有合并症的脆弱患者群体带来了重大健康风险。为帮助降低风险,我们开发了一种强大的概率方法来前瞻性预测DDI诱导的ADRs。基于此方法,我们为1096种ADRs开发了预测模型,并使用它们来预测近800种药物的所有两两组合通过DDIs与这些ADRs相关联的倾向。我们通过互联网公开提供了这些预测。