Suppr超能文献

小鼠前味觉区的III型细胞比后味觉区的III型细胞在免疫组织化学上更具多样性。

Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

作者信息

Wilson Courtney E, Finger Thomas E, Kinnamon Sue C

机构信息

Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO 80045, USA.

Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA.

出版信息

Chem Senses. 2017 Oct 31;42(9):759-767. doi: 10.1093/chemse/bjx055.

Abstract

Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields.

摘要

哺乳动物味蕾中III型细胞的激活与酸(酸味)和咸味刺激的转导有关。有几条证据表明,前味觉区域中III型细胞的功能可能与后味觉区域中III型细胞的功能不同。然而,支持这一观察结果的基础解剖学依据却很少。大多数现有的表征这种细胞类型的免疫组织化学数据都集中在舌后部的轮廓乳头味蕾上。缺乏来自前味觉区域——菌状乳头和软腭——的等效数据。在这里,我们比较了四个味觉区域(菌状乳头、软腭、轮廓乳头和叶状乳头)中的III型细胞对III型细胞的四种典型标志物的反应性:多囊肾病2样1(PKD2L1)、突触体相关蛋白25(SNAP25)、血清素(5-HT)和谷氨酸脱羧酶67(GAD67)。我们的研究结果表明,虽然PKD2L1、5-HT和SNAP25在后味觉区域高度一致,但在前味觉区域却有所不同。特别是,一部分味觉细胞表达PKD2L1但没有突触标志物,而一部分SNAP25细胞缺乏PKD2L1的表达。在后味觉区域,GAD67阳性细胞是表达PKD2L1的味觉细胞的一个子集,但前味觉区域也包含大量仅表达GAD67的细胞。这些表达模式的差异可能是前、后味觉区域之间观察到的功能差异的基础。

相似文献

2
Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells.
J Biol Chem. 2010 Jun 4;285(23):17277-81. doi: 10.1074/jbc.C110.132944. Epub 2010 Apr 20.
3
The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse.
Chem Senses. 2008 Mar;33(3):243-54. doi: 10.1093/chemse/bjm083. Epub 2007 Dec 21.
4
A proton current associated with sour taste: distribution and functional properties.
FASEB J. 2015 Jul;29(7):3014-26. doi: 10.1096/fj.14-265694. Epub 2015 Apr 9.
6
Genetic Labeling of Car4-expressing Cells Reveals Subpopulations of Type III Taste Cells.
Chem Senses. 2017 Oct 31;42(9):747-758. doi: 10.1093/chemse/bjx048.
7
Sour taste responses in mice lacking PKD channels.
PLoS One. 2011;6(5):e20007. doi: 10.1371/journal.pone.0020007. Epub 2011 May 19.
8
Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1.
Chem Senses. 2014 Jun;39(5):403-14. doi: 10.1093/chemse/bju010. Epub 2014 Mar 28.
9
Whole transcriptome profiling of taste bud cells.
Sci Rep. 2017 Aug 8;7(1):7595. doi: 10.1038/s41598-017-07746-z.
10
Amiloride-sensitive channels in type I fungiform taste cells in mouse.
BMC Neurosci. 2008 Jan 2;9:1. doi: 10.1186/1471-2202-9-1.

引用本文的文献

1
Dual functions of SNAP25 in mouse taste buds.
J Physiol. 2025 Aug;603(16):4555-4571. doi: 10.1113/JP288683. Epub 2025 Jun 24.
2
Give-and-take of gustation: the interplay between gustatory neurons and taste buds.
Chem Senses. 2024 Jan 1;49. doi: 10.1093/chemse/bjae029.
4
High Sox2 expression predicts taste lineage competency of lingual progenitors in vitro.
Development. 2023 Feb 15;150(4). doi: 10.1242/dev.201375. Epub 2023 Feb 16.
6
The Cellular and Molecular Basis of Sour Taste.
Annu Rev Physiol. 2022 Feb 10;84:41-58. doi: 10.1146/annurev-physiol-060121-041637. Epub 2021 Nov 9.
7
GAD65Cre Drives Reporter Expression in Multiple Taste Cell Types.
Chem Senses. 2021 Jan 1;46. doi: 10.1093/chemse/bjab033.
8
Type II/III cell composition and NCAM expression in taste buds.
Cell Tissue Res. 2021 Sep;385(3):557-570. doi: 10.1007/s00441-021-03452-5. Epub 2021 May 4.
9
Cellular Diversity and Regeneration in Taste Buds.
Curr Opin Physiol. 2021 Apr;20:146-153. doi: 10.1016/j.cophys.2021.01.003. Epub 2021 Jan 12.
10
A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli.
PLoS Genet. 2020 Aug 13;16(8):e1008925. doi: 10.1371/journal.pgen.1008925. eCollection 2020 Aug.

本文引用的文献

1
The cellular mechanism for water detection in the mammalian taste system.
Nat Neurosci. 2017 Jul;20(7):927-933. doi: 10.1038/nn.4575. Epub 2017 May 29.
3
The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E229-38. doi: 10.1073/pnas.1514282112. Epub 2015 Dec 1.
4
Progress and renewal in gustation: new insights into taste bud development.
Development. 2015 Nov 1;142(21):3620-9. doi: 10.1242/dev.120394.
5
Synaptic communication and signal processing among sensory cells in taste buds.
J Physiol. 2014 Aug 15;592(16):3387-92. doi: 10.1113/jphysiol.2013.269837. Epub 2014 Mar 24.
6
CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.
Nature. 2013 Mar 14;495(7440):223-6. doi: 10.1038/nature11906. Epub 2013 Mar 6.
7
High salt recruits aversive taste pathways.
Nature. 2013 Feb 28;494(7438):472-5. doi: 10.1038/nature11905. Epub 2013 Feb 13.
8
Functional cell types in taste buds have distinct longevities.
PLoS One. 2013;8(1):e53399. doi: 10.1371/journal.pone.0053399. Epub 2013 Jan 8.
9
Taste buds as peripheral chemosensory processors.
Semin Cell Dev Biol. 2013 Jan;24(1):71-9. doi: 10.1016/j.semcdb.2012.12.002. Epub 2012 Dec 20.
10
Acid stimulation (sour taste) elicits GABA and serotonin release from mouse taste cells.
PLoS One. 2011;6(10):e25471. doi: 10.1371/journal.pone.0025471. Epub 2011 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验