Suppr超能文献

α-微管蛋白乙酰化通过抑制神经元中微管末端动力学来限制轴突过度分支。

α-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons.

机构信息

State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

School of Life Science and Technology, ShanghaiTech University, Shanghai, China.

出版信息

Cereb Cortex. 2018 Sep 1;28(9):3332-3346. doi: 10.1093/cercor/bhx225.

Abstract

Axon growth is tightly controlled to establish functional neural circuits during brain development. Despite the belief that cytoskeletal dynamics is critical for cell morphology, how microtubule acetylation regulates axon development in the mammalian central nervous system remains unclear. Here, we report that loss of α-tubulin acetylation by ablation of MEC-17 in mice predisposes neurons to axon overbranching and overgrowth. Introduction of MEC-17F183A lacking α-tubulin acetyltransferase activity into MEC-17-deficient neurons failed to rescue axon defects. Moreover, loss of α-tubulin acetylation led to increases in microtubule debundling, microtubule invasion into filopodia and growth cones, and microtubule plus-end dynamics along the axon. Taxol application dampened microtubule hyperdynamics and suppressed axon overbranching and overgrowth in MEC-17-deficient neurons. Thus, our study reveals that α-tubulin acetylation acts as a brake for axon overbranching and overgrowth by dampening microtubule dynamics, providing insight into the role of microtubule post-translational modifications in regulating neural development.

摘要

轴突生长受到严格控制,以在大脑发育过程中建立功能性神经回路。尽管人们相信细胞骨架动力学对于细胞形态至关重要,但微管乙酰化如何调节哺乳动物中枢神经系统中的轴突发育仍不清楚。在这里,我们报告说,通过在小鼠中消融 MEC-17 来去除 α-微管蛋白乙酰化,会使神经元易于发生轴突过度分支和过度生长。将缺乏 α-微管蛋白乙酰转移酶活性的 MEC-17F183A 引入 MEC-17 缺陷神经元中,无法挽救轴突缺陷。此外,α-微管蛋白乙酰化的丧失导致微管去束化、微管侵入丝状伪足和生长锥、以及沿着轴突的微管正极动力学增加。紫杉醇的应用抑制了微管的超动力学,并抑制了 MEC-17 缺陷神经元中的轴突过度分支和过度生长。因此,我们的研究表明,α-微管蛋白乙酰化通过抑制微管动力学来充当轴突过度分支和过度生长的制动器,为微管翻译后修饰在调节神经发育中的作用提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验