Suppr超能文献

基于临床和社会心理特征的中国卒中幸存者卒中后抑郁风险预测模型

A risk prediction model for post-stroke depression in Chinese stroke survivors based on clinical and socio-psychological features.

作者信息

Liu Rui, Yue Yingying, Jiang Haitang, Lu Jian, Wu Aiqin, Geng Deqin, Wang Jun, Lu Jianxin, Li Shenghua, Tang Hua, Lu Xuesong, Zhang Kezhong, Liu Tian, Yuan Yonggui, Wang Qiao

机构信息

School of Information Science and Engineering, Southeast University, Nanjing, China.

Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.

出版信息

Oncotarget. 2017 Apr 7;8(38):62891-62899. doi: 10.18632/oncotarget.16907. eCollection 2017 Sep 8.

Abstract

BACKGROUND

Post-stroke depression (PSD) is a frequent complication that worsens rehabilitation outcomes and patient quality of life. This study developed a risk prediction model for PSD based on patient clinical and socio-psychology features for the early detection of high risk PSD patients.

RESULTS

Risk predictors included a history of brain cerebral infarction (odds ratio [OR], 3.84; 95% confidence interval [CI], 2.22-6.70; < 0.0001) and four socio-psychological factors including Eysenck Personality Questionnaire with Neuroticism/Stability (OR, 1.18; 95% CI, 1.12-1.20; < 0.0001), life event scale (OR, 0.99; 95% CI, 0.98-0.99; = 0.0007), 20 items Toronto Alexithymia Scale (OR, 1.06; 95% CI, 1.02-1.10; = 0.002) and Social Support Rating Scale (OR, 0.91; 95% CI, 0.87-0.90; < 0.001) in the logistic model. In addition, 11 rules were generated in the tree model. The areas under the curve of the ROC and the accuracy for the tree model were 0.85 and 0.86, respectively.

METHODS

This study recruited 562 stroke patients in China who were assessed for demographic data, medical history, vascular risk factors, functional status post-stroke, and socio-psychological factors. Multivariate backward logistic regression was used to extract risk factors for depression in 1-month after stroke. We converted the logistic model to a visible tree model using the decision tree method. Receiver operating characteristic (ROC) was used to evaluate the performance of the model.

CONCLUSION

This study provided an effective risk model for PSD and indicated that the socio-psychological factors were important risk factors of PSD.

摘要

背景

卒中后抑郁(PSD)是一种常见并发症,会使康复效果及患者生活质量恶化。本研究基于患者临床及社会心理特征开发了PSD风险预测模型,用于早期发现PSD高危患者。

结果

风险预测因素包括脑梗死病史(比值比[OR],3.84;95%置信区间[CI],2.22 - 6.70;P < 0.0001)以及艾森克人格问卷神经质/稳定性、生活事件量表、多伦多述情障碍20项量表和社会支持评定量表这四个社会心理因素(在逻辑模型中,OR分别为1.18;95%CI,1.12 - 1.20;P < 0.0001;OR为0.99;95%CI,0.98 - 0.99;P = 0.0007;OR为1.06;95%CI,1.02 - 1.10;P = 0.002;OR为0.91;95%CI,0.87 - 0.90;P < 0.001)。此外,在树模型中生成了11条规则。树模型的ROC曲线下面积及准确率分别为0.85和0.86。

方法

本研究在中国招募了562例卒中患者,对其进行人口统计学数据、病史、血管危险因素、卒中后功能状态及社会心理因素评估。采用多因素向后逻辑回归提取卒中后1个月内抑郁的危险因素。我们使用决策树方法将逻辑模型转换为可视化树模型。采用受试者工作特征(ROC)曲线评估模型性能。

结论

本研究为PSD提供了一种有效的风险模型,并表明社会心理因素是PSD的重要危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2f8/5609889/d2ddad18dc60/oncotarget-08-62891-g001.jpg

相似文献

1
A risk prediction model for post-stroke depression in Chinese stroke survivors based on clinical and socio-psychological features.
Oncotarget. 2017 Apr 7;8(38):62891-62899. doi: 10.18632/oncotarget.16907. eCollection 2017 Sep 8.
2
Predictors of early-onset post-ischemic stroke depression: a cross-sectional study.
BMC Neurol. 2017 Nov 17;17(1):199. doi: 10.1186/s12883-017-0980-5.
3
Prevalence and predictors of post stroke depression among elderly stroke survivors.
Arq Neuropsiquiatr. 2016 Aug;74(8):621-5. doi: 10.1590/0004-282X20160088.
4
Predictors of depression and anxiety in community dwelling stroke survivors: a cohort study.
Disabil Rehabil. 2014;36(23):1975-82. doi: 10.3109/09638288.2014.884172. Epub 2014 Feb 6.
6
Key Factors Associated with Major Depression in a National Sample of Stroke Survivors.
J Stroke Cerebrovasc Dis. 2016 May;25(5):1090-1095. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.042. Epub 2016 Feb 10.
7
Depression among stroke survivors: a community-based, prospective study from Kolkata, India.
Am J Geriatr Psychiatry. 2013 Sep;21(9):821-31. doi: 10.1016/j.jagp.2013.03.013. Epub 2013 Jul 17.
9
Psychosocial problems associated with depression at 18 months poststroke.
Int J Geriatr Psychiatry. 2014 Feb;29(2):144-52. doi: 10.1002/gps.3974. Epub 2013 Apr 29.

引用本文的文献

3
Social Support and Depression among Stroke Patients: A Topical Review.
Int J Environ Res Public Health. 2023 Dec 8;20(24):7157. doi: 10.3390/ijerph20247157.
4
Role of social support in poststroke depression: A meta-analysis.
Front Psychiatry. 2022 Sep 23;13:924277. doi: 10.3389/fpsyt.2022.924277. eCollection 2022.
5
A machine learning approach for predicting suicidal ideation in post stroke patients.
Sci Rep. 2022 Sep 23;12(1):15906. doi: 10.1038/s41598-022-19828-8.
6
Psychosis Relapse Prediction Leveraging Electronic Health Records Data and Natural Language Processing Enrichment Methods.
Front Psychiatry. 2022 Apr 5;13:844442. doi: 10.3389/fpsyt.2022.844442. eCollection 2022.
10
Efficacy of escitalopram oxalate for patients with post-stroke depression.
Medicine (Baltimore). 2018 Apr;97(14):e0219. doi: 10.1097/MD.0000000000010219.

本文引用的文献

1
A Depression Screening Protocol for Patients With Acute Stroke: A Quality Improvement Project.
J Neurosci Nurs. 2017 Feb;49(1):39-48. doi: 10.1097/JNN.0000000000000231.
2
Prevalence and predictors of post stroke depression among elderly stroke survivors.
Arq Neuropsiquiatr. 2016 Aug;74(8):621-5. doi: 10.1590/0004-282X20160088.
3
Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass.
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):E3270-9. doi: 10.1073/pnas.1524294113. Epub 2016 May 16.
5
Depression predictors within six months of ischemic stroke: The DEPRESS Study.
Int J Stroke. 2016 Jul;11(5):519-25. doi: 10.1177/1747493016632257. Epub 2016 Feb 12.
6
Post-Stroke Depression: A Review.
Am J Psychiatry. 2016 Mar 1;173(3):221-31. doi: 10.1176/appi.ajp.2015.15030363. Epub 2015 Dec 18.
7
Bone-formers and bone-losers in an archaeological population.
Am J Phys Anthropol. 2016 Apr;159(4):577-84. doi: 10.1002/ajpa.22912. Epub 2015 Dec 15.
9
Predicting Depression among Patients with Diabetes Using Longitudinal Data. A Multilevel Regression Model.
Methods Inf Med. 2015;54(6):553-9. doi: 10.3414/ME14-02-0009. Epub 2015 Nov 18.
10
Psychological factors determine depressive symptomatology after stroke.
Arch Phys Med Rehabil. 2015 Jun;96(6):1064-70. doi: 10.1016/j.apmr.2015.01.022. Epub 2015 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验