Suppr超能文献

机器学习预测中风后抑郁的准确性:一项系统评价与荟萃分析。

Accuracy of Machine Learning in Predicting Post-Stroke Depression: A Systematic Review and Meta-Analysis.

作者信息

Husile Husile, Bao Qinglin, Sarula Sarula, La Chu, Wujisiguleng Wujisiguleng, Siqintu Siqintu, Temuqile Temuqile

机构信息

Inner Mongolia Medical University, Hohhot Inner Mongolia, China.

International Mongolian Hospital of Inner Mongolia, Hohhot Inner Mongolia, China.

出版信息

Brain Behav. 2025 May;15(5):e70557. doi: 10.1002/brb3.70557.

Abstract

INTRODUCTION

Post-stroke depression is one of the important complications of stroke and affects patients' quality of life. Early identification of post-stroke depression is crucial for its timely prevention. The accuracy of machine learning as a prediction method is controversial. To systematically analyze these studies, we conducted a systematic evaluation to review the effectiveness of the machine learning prediction models in predicting post-stroke depression based on meta-analysis.

METHODS

As of November 20, 2023, we conducted a systematic literature retrieval in databases such as PubMed, Embase, Cochrane, and Web of Science to investigate machine learning model predictions in patients who had post-stroke depression. The tool used in this study to assess the quality of the retrieved literature is PROBAST (Prediction model Risk of Bias Assessment Tool).

RESULTS

A total of 28 studies with 85,223 patients as subjects were included in the meta-analysis. According to data, the c-index in the validation set was significantly lower than that in the training set and may have been at risk of overfitting, even though there was a desirable accuracy. In addition, we found substantial differences in the duration of follow-up for post-stroke depression, and meta-regression showed that the c-index based on the prediction models did not decay with longer follow-up.

CONCLUSIONS

Reasonable prediction models are effective prediction tools for post-stroke depression. A reasonable prediction seems to predict the risk of post-stroke depression occurrence at different time points and can provide a prevention tool specific to the risk.

摘要

引言

中风后抑郁是中风的重要并发症之一,会影响患者的生活质量。早期识别中风后抑郁对于及时预防至关重要。机器学习作为一种预测方法的准确性存在争议。为了系统分析这些研究,我们基于荟萃分析进行了系统评价,以评估机器学习预测模型在预测中风后抑郁方面的有效性。

方法

截至2023年11月20日,我们在PubMed、Embase、Cochrane和Web of Science等数据库中进行了系统的文献检索,以研究机器学习模型对中风后抑郁患者的预测情况。本研究用于评估检索文献质量的工具是PROBAST(预测模型偏倚风险评估工具)。

结果

荟萃分析共纳入28项研究,以85,223名患者为研究对象。数据显示,验证集中的c指数显著低于训练集,即使准确性良好,仍可能存在过度拟合的风险。此外,我们发现中风后抑郁的随访时间存在显著差异,荟萃回归显示基于预测模型的c指数不会随着随访时间延长而下降。

结论

合理的预测模型是预测中风后抑郁的有效工具。合理的预测似乎能够预测不同时间点中风后抑郁发生的风险,并能提供针对该风险的预防工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6b0/12105110/a4f1f26e0733/BRB3-15-e70557-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验