Qu Jifeng, Benz Samuel P, Coakley Kevin, Rogalla Horst, Tew Weston L, White Rod, Zhou Kunli, Zhou Zhenyu
National Institute of Metrology (NIM), Beijing 100029, People's Republic of China.
National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, CO 80305-3328, United States of America.
Metrologia. 2017 Aug;54(4):549-558. doi: 10.1088/1681-7575/aa781e. Epub 2017 Jul 18.
Recent measurements using acoustic gas thermometry have determined the value of the Boltzmann constant, , with a relative uncertainty less than 1 × 10. These results have been supported by a measurement with a relative uncertainty of 1.9 × 10 made with dielectric-constant gas thermometry. Together, the measurements meet the requirements of the International Committee for Weights and Measures and enable them to proceed with the redefinition of the kelvin in 2018. In further support, we provide a new determination of using a purely electronic approach, Johnson noise thermometry, in which the thermal noise power generated by a sensing resistor immersed in a triple-point-of-water cell is compared to the noise power of a quantum-accurate pseudo-random noise waveform of nominally equal noise power. The experimental setup differs from that of the 2015 determination in several respects: a 100 Ω resistor is used as the thermal noise source, identical thin coaxial cables made of solid beryllium-copper conductors and foam dielectrics are used to connect the thermal and quantum-accurate noise sources to the correlator so as to minimize the temperature and frequency sensitivity of the impedances in the connecting leads, and no trimming capacitors or inductors are inserted into the connecting leads. The combination of reduced uncertainty due to spectral mismatches in the connecting leads and reduced statistical uncertainty due to a longer integration period of 100 d results in an improved determination of = 1.380 649 7(37) × 10 J K with a relative standard uncertainty of 2.7 × 10 and a relative offset of 0.89 × 10 from the CODATA 2014 recommended value. The most significant terms in the uncertainty budget, the statistical uncertainty and the spectral-mismatch uncertainty, are uncorrelated with the corresponding uncertainties in the 2015 measurements.
近期使用声学气体温度计进行的测量已确定了玻尔兹曼常数的值,其相对不确定度小于1×10⁻⁶。这些结果得到了使用介电常数气体温度计进行的相对不确定度为1.9×10⁻⁶的测量的支持。这些测量共同满足了国际计量委员会的要求,并使他们能够在2018年推进开尔文的重新定义。作为进一步的支持,我们提供了一种使用纯电子方法——约翰逊噪声温度计对玻尔兹曼常数的新测定,其中将浸入水三相点容器中的传感电阻产生的热噪声功率与名义上具有相等噪声功率的量子精确伪随机噪声波形的噪声功率进行比较。该实验装置在几个方面与2015年的测定不同:使用100Ω电阻作为热噪声源,使用由实心铍铜导体和泡沫电介质制成的相同细同轴电缆将热噪声源和量子精确噪声源连接到相关器,以最小化连接导线中阻抗的温度和频率灵敏度,并且没有在连接导线中插入微调电容器或电感器。连接导线中频谱失配导致的不确定度降低以及由于100天的更长积分时间导致的统计不确定度降低,共同使得玻尔兹曼常数的测定得到改进,结果为=1.380 649 7(37)×10⁻²³ J K⁻¹,相对标准不确定度为2.7×10⁻⁷,相对于CODATA 2014推荐值的相对偏差为0.89×10⁻⁷。不确定度预算中最主要的项,即统计不确定度和频谱失配不确定度,与2015年测量中的相应不确定度不相关。