Coakley Kevin J, Qu Jifeng
National Institute of Standards and Technology (NIST), Boulder, CO 80302 USA.
National Institute of Metrology (NIM), Beijing 100029, Peoples Republic of China.
Metrologia. 2017 Apr;54(2):204-217. doi: 10.1088/1681-7575/aa5d21. Epub 2017 Mar 21.
In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor at the triple point of water, and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source is constant to within 1 part in a billion for frequencies up to 1 GHz. Given knowledge of this ratio, and the values of other parameters that are known or measured, one can determine the Boltzmann constant. Due, in part, to mismatch between transmission lines, the experimental ratio spectrum varies with frequency. We model this spectrum as an even polynomial function of frequency where the constant term in the polynomial determines the Boltzmann constant. When determining this constant (offset) from experimental data, the assumed complexity of the ratio spectrum model and the maximum frequency analyzed (fitting bandwidth) dramatically affects results. Here, we select the complexity of the model by cross-validation - a data-driven statistical learning method. For each of many fitting bandwidths, we determine the component of uncertainty of the offset term that accounts for random and systematic effects associated with imperfect knowledge of model complexity. We select the fitting bandwidth that minimizes this uncertainty. In the most recent measurement of the Boltzmann constant, results were determined, in part, by application of an earlier version of the method described here. Here, we extend the earlier analysis by considering a broader range of fitting bandwidths and quantify an additional component of uncertainty that accounts for imperfect performance of our fitting bandwidth selection method. For idealized simulated data with additive noise similar to experimental data, our method correctly selects the true complexity of the ratio spectrum model for all cases considered. A new analysis of data from the recent experiment yields evidence for a temporal trend in the offset parameters.
在基于约翰逊噪声测温法对玻尔兹曼常数进行的电子测量中,在水的三相点处,电阻器上热噪声的功率谱密度与由量子精确电压噪声源合成产生的伪随机噪声的功率谱密度之比,对于高达1吉赫兹的频率,在十亿分之一的范围内保持恒定。已知该比值以及其他已知或测量的参数值,就可以确定玻尔兹曼常数。部分由于传输线之间的失配,实验比值谱随频率变化。我们将此谱建模为频率的偶多项式函数,其中多项式中的常数项决定玻尔兹曼常数。从实验数据确定该常数(偏移量)时,比值谱模型的假设复杂度和分析的最大频率(拟合带宽)会极大地影响结果。在此,我们通过交叉验证——一种数据驱动的统计学习方法来选择模型的复杂度。对于许多拟合带宽中的每一个,我们确定偏移项不确定性的组成部分,该部分考虑了与模型复杂度的不完全了解相关的随机和系统效应。我们选择使这种不确定性最小化的拟合带宽。在最近对玻尔兹曼常数的测量中,结果部分是通过应用此处所述方法的早期版本确定的。在此,我们通过考虑更广泛的拟合带宽范围扩展了早期分析,并量化了另一个不确定性组成部分,该部分考虑了我们的拟合带宽选择方法的不完善性能。对于具有类似于实验数据的加性噪声的理想化模拟数据,我们的方法在所有考虑的情况下都正确地选择了比值谱模型的真实复杂度。对最近实验数据的新分析得出了偏移参数存在时间趋势的证据。