Suppr超能文献

细胞内钠浓度的缓慢动力学增加了神经元整合的时间窗口:一项模拟研究。

The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study.

作者信息

Zylbertal Asaph, Yarom Yosef, Wagner Shlomo

机构信息

Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel.

Sagol Department of Neurobiology, University of HaifaHaifa, Israel.

出版信息

Front Comput Neurosci. 2017 Sep 20;11:85. doi: 10.3389/fncom.2017.00085. eCollection 2017.

Abstract

Changes in intracellular Na concentration ([Na]) are rarely taken into account when neuronal activity is examined. As opposed to Ca, [Na] dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na] dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na] as a state variable to these models, and allowed it to modulate the Na Nernst potential, the Na-K pump current, and the Na-Ca exchanger rate. Our results indicate that in most cases [Na] dynamics are significantly slower than [Ca] dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na] dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na-K pump; specific tagging of active synapses by extended Ca elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na] dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.

摘要

在研究神经元活动时,细胞内钠离子浓度([Na])的变化很少被考虑在内。与钙离子不同,[Na]的动态变化受到纵向扩散的强烈影响,因此除了流入和流出机制的定位外,它们还受神经元形态结构的支配。在这里,我们在三个多房室神经元模型中研究了[Na]的动态变化及其对神经元计算的影响,这三个模型代表了三种不同的细胞类型:副嗅球(AOB)的二尖瓣细胞、皮层第五层的锥体细胞和小脑浦肯野细胞。我们将[Na]作为一个状态变量添加到这些模型中,并使其调节钠能斯特电位、钠钾泵电流和钠钙交换率。我们的结果表明,在大多数情况下,[Na]的动态变化比[Ca]的动态变化明显更慢,因此可能以神经元类型特异性的方式对神经元计算产生长期影响。我们表明,[Na]的动态变化通过三个主要过程影响神经元活动:由于钠能斯特电位降低,反复活跃的突触中兴奋性突触后电位(EPSP)幅度减小;由于钠钾泵活性增加,产生活动依赖性超极化;通过延长的钙升高对活跃突触进行特异性标记,同时反向传播动作电位或复合尖峰可增强这种标记。因此,我们得出结论,每当研究突触可塑性、广泛的突触输入或爆发活动时,都应考虑[Na]的动态变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验