Moriya Makoto
Faculty of Science, Department of Chemistry, Shizuoka University, Shizuoka, Japan.
Sci Technol Adv Mater. 2017 Aug 30;18(1):634-643. doi: 10.1080/14686996.2017.1366816. eCollection 2017.
In the development of innovative molecule-based materials, the identification of the structural features in supramolecular solids and the understanding of the correlation between structure and function are important factors. The author investigated the development of supramolecular solid electrolytes by constructing ion conduction paths using a supramolecular hierarchical structure in molecular crystals because the ion conduction path is an attractive key structure due to its ability to generate solid-state ion diffusivity. The obtained molecular crystals exhibited selective lithium ion diffusion via conduction paths consisting of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and small molecules such as ether or amine compounds. In the present review, the correlation between the crystal structure and ion conductivity of the obtained molecular crystals is addressed based on the systematic structural control of the ionic conduction paths through the modification of the component molecules. The relationship between the crystal structure and ion conductivity of the molecular crystals provides a guideline for the development of solid electrolytes based on supramolecular solids exhibiting rapid and selective lithium ion conduction.
在基于创新分子的材料开发中,确定超分子固体中的结构特征以及理解结构与功能之间的相关性是重要因素。作者通过在分子晶体中利用超分子层次结构构建离子传导路径来研究超分子固体电解质的开发,因为离子传导路径由于其产生固态离子扩散性的能力而成为一个有吸引力的关键结构。所获得的分子晶体通过由双(三氟甲磺酰)亚胺锂(LiTFSA)和醚或胺化合物等小分子组成的传导路径表现出选择性锂离子扩散。在本综述中,基于通过修饰组分分子对离子传导路径进行系统的结构控制,探讨了所获得的分子晶体的晶体结构与离子电导率之间的相关性。分子晶体的晶体结构与离子电导率之间的关系为基于表现出快速和选择性锂离子传导的超分子固体的固体电解质开发提供了指导。