Suppr超能文献

研究用于5V级固态电池的Li{N(SOF)}(NCCHCHCN)分子晶体电解质的界面

Investigating the Interface of Li{N(SOF)}(NCCHCHCN) Molecular Crystal Electrolytes for 5 V Class Solid-State Batteries.

作者信息

Zheng Ruijie, Kobayashi Shigeru, Ogawa Mana, Katsuragawa Hiroto, Watanabe Yuki, Deng Jun, Nakayama Ryo, Nishio Kazunori, Shimizu Ryota, Tateyama Yoshitaka, Moriya Makoto, Hitosugi Taro

机构信息

School of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8552, Japan.

Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.

出版信息

ACS Appl Mater Interfaces. 2025 Apr 9;17(14):21951-21957. doi: 10.1021/acsami.4c22076. Epub 2025 Mar 28.

Abstract

Molecular crystals composed of lithium bis(fluorosulfonyl)amide (LiFSA) and succinonitrile (SN), hereafter referred to as Li(FSA)(SN), are a promising solid electrolyte. To realize a wider application of molecular crystal solid electrolytes, it is critical to investigate the interface of Li(FSA)(SN) and 5 V-class positive electrodes. Here, we studied the interface of Li(FSA)(SN) with 5 V-class LiNiMnO (LNMO) positive electrodes utilizing modeled thin-film batteries. The Li(FSA)(SN)|LNMO interfaces degrade, leading to an increase in interface resistance and capacity loss. By inserting an amorphous LiPO layer into the Li(FSA)(SN)|LNMO interface, the low interface resistance remains, and no interphase layer is observed. The discharge capacity remains at 96% after 100 charge and discharge cycles. This study demonstrated the feasibility of operating Li(FSA)(SN) in a 5 V-class solid-state battery revealing the potential of molecular crystal solid electrolytes in high-energy-density batteries.

摘要

由双(氟磺酰)亚胺锂(LiFSA)和丁二腈(SN)组成的分子晶体,以下简称Li(FSA)(SN),是一种很有前景的固体电解质。为了实现分子晶体固体电解质更广泛的应用,研究Li(FSA)(SN)与5V级正极的界面至关重要。在此,我们利用模拟薄膜电池研究了Li(FSA)(SN)与5V级LiNiMnO(LNMO)正极的界面。Li(FSA)(SN)|LNMO界面会退化,导致界面电阻增加和容量损失。通过在Li(FSA)(SN)|LNMO界面插入非晶态LiPO层,低界面电阻得以保持,且未观察到中间相层。经过100次充放电循环后,放电容量仍保持在96%。这项研究证明了在5V级固态电池中使用Li(FSA)(SN)的可行性,揭示了分子晶体固体电解质在高能量密度电池中的潜力。

相似文献

3
Solid Thin-Film Battery Using a Densely Packed LiNiMnO Crystal Layer.使用紧密堆积的LiNiMnO晶体层的固态薄膜电池。
ACS Omega. 2025 Apr 18;10(16):16073-16078. doi: 10.1021/acsomega.4c09393. eCollection 2025 Apr 29.
4
Extremely Low Resistance of LiPO Electrolyte/Li(NiMn)O Electrode Interfaces.LiPO 电解液/Li(NiMn)O 电极界面的超低电阻。
ACS Appl Mater Interfaces. 2018 Aug 15;10(32):27498-27502. doi: 10.1021/acsami.8b08506. Epub 2018 Aug 1.
6
High Li-Ion Conductivity in Li{N(SOF)}(NCCHCHCN) Molecular Crystal.Li{N(SOF)}(NCCHCHCN)分子晶体中的高锂离子电导率
Nano Lett. 2020 Nov 11;20(11):8200-8204. doi: 10.1021/acs.nanolett.0c03313. Epub 2020 Oct 28.
8
Passivation of the Cathode-Electrolyte Interface for 5 V-Class All-Solid-State Batteries.用于5V级全固态电池的阴极-电解质界面钝化
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28083-28090. doi: 10.1021/acsami.0c03610. Epub 2020 Jun 10.

本文引用的文献

1
2
A soft co-crystalline solid electrolyte for lithium-ion batteries.锂离子电池用软共晶固态电解质。
Nat Mater. 2023 May;22(5):627-635. doi: 10.1038/s41563-023-01508-1. Epub 2023 Apr 13.
3
Priority and Prospect of Sulfide-Based Solid-Electrolyte Membrane.硫化物基固体电解质膜的研究重点与展望
Adv Mater. 2023 Dec;35(50):e2206013. doi: 10.1002/adma.202206013. Epub 2023 Mar 11.
5
Drastic Reduction of the Solid Electrolyte-Electrode Interface Resistance via Annealing in Battery Form.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):2703-2710. doi: 10.1021/acsami.1c17945. Epub 2022 Jan 6.
9
High Li-Ion Conductivity in Li{N(SOF)}(NCCHCHCN) Molecular Crystal.Li{N(SOF)}(NCCHCHCN)分子晶体中的高锂离子电导率
Nano Lett. 2020 Nov 11;20(11):8200-8204. doi: 10.1021/acs.nanolett.0c03313. Epub 2020 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验