Prasad Saumya, Mandal Imon, Singh Shubham, Paul Ashim, Mandal Bhubaneswar, Venkatramani Ravindra, Swaminathan Rajaram
Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India . Email:
Department of Chemical Sciences , Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba , Mumbai 400005 , India . Email:
Chem Sci. 2017 Aug 1;8(8):5416-5433. doi: 10.1039/c7sc00880e. Epub 2017 May 19.
Electronic absorption spectra of proteins are primarily characterized over the ultraviolet region (185-320 nm) of the electromagnetic spectrum. While recent studies on peptide aggregates have revealed absorption beyond 350 nm, monomeric proteins lacking aromatic amino acids, disulphide bonds, and active site prosthetic groups are expected to remain optically silent beyond 250 nm. Here, in a joint theoretical and experimental investigation, we report the distinctive UV-Vis absorption spectrum between 250 nm [ = 7338 M cm] and 800 nm [ = 501 M cm] in a synthetic 67 residue protein (αC), in monomeric form, devoid of aromatic amino acids. Systematic control studies with high concentration non-aromatic amino acid solutions revealed significant absorption beyond 250 nm for charged amino acids which constitute over 50% of the sequence composition in αC. Classical atomistic molecular dynamics (MD) simulations of αC reveal dynamic interactions between multiple charged sidechains of Lys and Glu residues present in αC. Time-dependent density functional theory calculations on charged amino acid residues sampled from the MD trajectories of αC reveal that the distinctive absorption features of αC may arise from two different types of charge transfer (CT) transitions involving spatially proximal Lys/Glu amino acids. Specifically, we show that the charged amino (NH)/carboxylate (COO) groups of Lys/Glu sidechains act as electronic charge acceptors/donors for photoinduced electron transfer either from/to the polypeptide backbone or to each other. Further, the sensitivity of the CT spectra to close/far/intermediate range of encounters between sidechains of Lys/Glu owing to the three dimensional protein fold can create the long tail in the αC absorption profile between 300 and 800 nm. Finally, we experimentally demonstrate the sensitivity of αC absorption spectrum to temperature and pH-induced changes in protein structure. Taken together, our investigation significantly expands the pool of spectroscopically active biomolecular chromophores and adds an optical 250-800 nm spectral window, which we term ProCharTS (Protein Charge Transfer Spectra), for label free probes of biomolecular structure and dynamics.
蛋白质的电子吸收光谱主要在电磁光谱的紫外区域(185 - 320纳米)进行表征。虽然最近对肽聚集体的研究揭示了在350纳米以上的吸收,但缺乏芳香族氨基酸、二硫键和活性位点辅基的单体蛋白质预计在250纳米以上仍保持光学沉默。在此,在一项联合理论与实验研究中,我们报告了一种合成的67个残基的单体形式蛋白质(αC)在250纳米[ = 7338 M cm]至800纳米[ = 501 M cm]之间独特的紫外 - 可见吸收光谱,该蛋白质不含芳香族氨基酸。对高浓度非芳香族氨基酸溶液进行的系统对照研究表明,构成αC序列组成超过50%的带电荷氨基酸在250纳米以上有显著吸收。αC的经典原子分子动力学(MD)模拟揭示了αC中存在的赖氨酸(Lys)和谷氨酸(Glu)残基的多个带电荷侧链之间的动态相互作用。对从αC的MD轨迹中采样的带电荷氨基酸残基进行的含时密度泛函理论计算表明,αC独特的吸收特征可能源于涉及空间上相邻的Lys/Glu氨基酸的两种不同类型的电荷转移(CT)跃迁。具体而言,我们表明Lys/Glu侧链的带电荷氨基(NH)/羧酸盐(COO)基团充当光诱导电子转移的电子电荷受体/供体,电子从多肽主链转移至/或从多肽主链转移,或者在它们之间相互转移。此外,由于三维蛋白质折叠,CT光谱对Lys/Glu侧链之间近距离/远距离/中间距离相遇的敏感性可在αC在300至800纳米之间的吸收谱中产生长尾巴。最后,我们通过实验证明了αC吸收光谱对温度和pH诱导的蛋白质结构变化的敏感性。综上所述,我们的研究显著扩展了具有光谱活性的生物分子发色团库,并增加了一个光学250 - 800纳米光谱窗口,我们将其称为ProCharTS(蛋白质电荷转移光谱),用于生物分子结构和动力学的无标记探测。