Suppr超能文献

基于 sigma-1 受体拮抗剂的 PLS 和 ANN 研究的新共识多变量模型。

New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists.

机构信息

Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, São Carlos, SP, 13560-970, Brazil.

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio, 1000, São Paulo, SP, 03828-000, Brazil.

出版信息

J Mol Model. 2017 Oct 2;23(10):302. doi: 10.1007/s00894-017-3444-3.

Abstract

The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r = 0.761, q = 0.656, r = 0.746, MSE = 0.132 and MAE = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSE values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r = 0.824, MSE = 0.088 and MAE = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r = 0.811, MSE = 0.100 and MAE = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and μ) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment. Graphical abstract Main scaffold of the 1-arylpyrazole derivatives and the selected descriptors.

摘要

神经病理性疼痛的治疗非常复杂,为此目的批准的药物很少。在文献中研究的化合物中,sigma-1 受体拮抗剂已显示出有希望。为了对 1-芳基吡唑衍生物的化合物进行定量构效关系研究,本文采用偏最小二乘法(PLS)和人工神经网络(ANN)方法进行了多变量分析。已经获得并验证了一个 PLS 模型,该模型具有 45 个训练集化合物和 13 个测试集化合物(r = 0.761,q = 0.656,r = 0.746,MSE = 0.132 和 MAE = 0.258)。此外,还采用了多层感知器神经网络(MLP-ANNs),以便提出由梯度下降与动量反向传播函数训练的非线性模型。基于 MSE 值,最佳的 MLP-ANN 模型组合成一个 MLP-ANN 共识模型(MLP-ANN-CM;r = 0.824,MSE = 0.088 和 MAE = 0.197)。最后,使用 PLS 和 MLP-ANN-CM 模型获得了一个通用共识模型(GCM)(r = 0.811,MSE = 0.100 和 MAE = 0.218)。此外,所选描述符(GGI6、Mor23m、SRW06、H7m、MLOGP 和μ)揭示了在计划新的 1-芳基吡唑类化合物时应考虑的重要特征。本文提出的多变量模型无疑是治疗神经病理性疼痛的新化合物合理药物设计的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验