Suppr超能文献

靶向代谢组学鉴定 BIO 300 减轻放射性肺损伤的药效生物标志物。

Targeted Metabolomics Identifies Pharmacodynamic Biomarkers for BIO 300 Mitigation of Radiation-Induced Lung Injury.

机构信息

School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, 20 N. Pine Street, Baltimore, Maryland, 21201, USA.

School of Medicine, Division of Translational Radiation Sciences Department of Radiation Oncology, University of Maryland, Baltimore, 21201, Maryland, USA.

出版信息

Pharm Res. 2017 Dec;34(12):2698-2709. doi: 10.1007/s11095-017-2200-9. Epub 2017 Oct 2.

Abstract

PURPOSE

Biomarkers serve a number of purposes during drug development including defining the natural history of injury/disease, serving as a secondary endpoint or trigger for intervention, and/or aiding in the selection of an effective dose in humans. BIO 300 is a patent-protected pharmaceutical formulation of nanoparticles of synthetic genistein being developed by Humanetics Corporation. The primary goal of this metabolomic discovery experiment was to identify biomarkers that correlate with radiation-induced lung injury and BIO 300 efficacy for mitigating tissue damage based upon the primary endpoint of survival.

METHODS

High-throughput targeted metabolomics of lung tissue from male C57L/J mice exposed to 12.5 Gy whole thorax lung irradiation, treated daily with 400 mg/kg BIO 300 for either 2 weeks or 6 weeks starting 24 h post radiation exposure, were assayed at 180 d post-radiation to identify potential biomarkers.

RESULTS

A panel of lung metabolites that are responsive to radiation and able to distinguish an efficacious treatment schedule of BIO 300 from a non-efficacious treatment schedule in terms of 180 d survival were identified.

CONCLUSIONS

These metabolites represent potential biomarkers that could be further validated for use in drug development of BIO 300 and in the translation of dose from animal to human.

摘要

目的

生物标志物在药物开发过程中具有多种用途,包括定义损伤/疾病的自然史、作为干预的次要终点或触发因素,以及/或有助于在人体中选择有效剂量。BIO 300 是由 Humanetics 公司开发的合成金雀异黄素纳米颗粒的专利保护药物制剂。这项代谢组学发现实验的主要目标是确定与放射性肺损伤和 BIO 300 缓解组织损伤的疗效相关的生物标志物,其依据是生存这一主要终点。

方法

对暴露于 12.5Gy 全胸肺照射的雄性 C57L/J 小鼠的肺组织进行高通量靶向代谢组学分析,在辐射后 24 小时开始每天用 400mg/kg 的 BIO 300 进行治疗,治疗时间分别为 2 周或 6 周,在辐射后 180 天进行检测,以确定潜在的生物标志物。

结果

确定了一组对辐射有反应的肺部代谢物,这些代谢物能够区分 BIO 300 有效治疗方案和无效治疗方案,从而提高 180 天的生存率。

结论

这些代谢物代表了潜在的生物标志物,可以进一步验证它们在 BIO 300 的药物开发以及从动物到人类剂量的转化中的应用。

相似文献

1
Targeted Metabolomics Identifies Pharmacodynamic Biomarkers for BIO 300 Mitigation of Radiation-Induced Lung Injury.
Pharm Res. 2017 Dec;34(12):2698-2709. doi: 10.1007/s11095-017-2200-9. Epub 2017 Oct 2.
2
Mitigation of radiation-induced lung injury with EUK-207 and genistein: effects in adolescent rats.
Radiat Res. 2013 Feb;179(2):125-34. doi: 10.1667/RR2954.1. Epub 2012 Dec 13.
4
Mitigation of lung injury after accidental exposure to radiation.
Radiat Res. 2011 Dec;176(6):770-80. doi: 10.1667/rr2562.1. Epub 2011 Oct 20.
5
BIO 300, a Nanosuspension of Genistein, Mitigates Radiation-Induced Erectile Dysfunction and Sensitizes Human Prostate Cancer Xenografts to Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2019 Oct 1;105(2):400-409. doi: 10.1016/j.ijrobp.2019.05.062. Epub 2019 Jun 5.
8
The Radioprotectant, BIO 300, Protects the Lungs from Total-Body Irradiation Injury in C57L/J Mice.
Radiat Res. 2023 Mar 1;199(3):294-300. doi: 10.1667/RADE-22-00142.1.
9
Amelioration of radiation-induced lung injury by halofuginone: An experimental study in Wistar-Albino rats.
Hum Exp Toxicol. 2017 Jun;36(6):638-647. doi: 10.1177/0960327116660753. Epub 2016 Jul 24.
10
Genistein protects against biomarkers of delayed lung sequelae in mice surviving high-dose total body irradiation.
J Radiat Res. 2008 Jul;49(4):361-72. doi: 10.1269/jrr.07121. Epub 2008 Apr 23.

引用本文的文献

2
Partial-body Models of Radiation Exposure.
Radiat Res. 2025 Mar 1;203(3):129-141. doi: 10.1667/RADE-24-00189.1.
3
The radioprotectant nano-genistein enhances radiotherapy efficacy of lung tumors in mice.
Transl Lung Cancer Res. 2023 May 31;12(5):999-1010. doi: 10.21037/tlcr-22-856. Epub 2023 May 9.
5
Serum Metabolomic Analysis of Radiation-Induced Lung Injury in Rats.
Dose Response. 2022 Jan 5;20(1):15593258211067060. doi: 10.1177/15593258211067060. eCollection 2022 Jan-Mar.
6
A Trans-Agency Workshop on the Pathophysiology of Radiation-Induced Lung Injury.
Radiat Res. 2022 Apr 1;197(4):408-414. doi: 10.1667/RADE-21-00153.1.
7
Microbiome study in irradiated mice treated with BIO 300, a promising radiation countermeasure.
Anim Microbiome. 2021 Oct 9;3(1):71. doi: 10.1186/s42523-021-00132-1.
8
A Trans-Agency Workshop on the Pathophysiology of Radiation-Induced Lung Injury.
Radiat Res. 2022 Apr 1;197(4):415-433. doi: 10.1667/RADE-21-00127.1.
9
Genistein From Protects Mice From Radiation-Induced Intestinal Injury.
Front Pharmacol. 2021 May 21;12:655652. doi: 10.3389/fphar.2021.655652. eCollection 2021.
10
Proteomics of Non-human Primate Plasma after Partial-body Radiation with Minimal Bone Marrow Sparing.
Health Phys. 2020 Nov;119(5):621-632. doi: 10.1097/HP.0000000000001350.

本文引用的文献

2
Plasma membrane reorganization links acid sphingomyelinase/ceramide to p38 MAPK pathways in endothelial cells apoptosis.
Cell Signal. 2017 May;33:10-21. doi: 10.1016/j.cellsig.2017.02.001. Epub 2017 Feb 6.
3
Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules.
Int J Radiat Biol. 2017 Oct;93(10):1151-1176. doi: 10.1080/09553002.2016.1269218. Epub 2017 Jan 12.
4
Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.
Curr Protoc Bioinformatics. 2016 Sep 7;55:14.10.1-14.10.91. doi: 10.1002/cpbi.11.
8
Early metabolomics changes in heart and plasma during chronic doxorubicin treatment in B6C3F1 mice.
J Appl Toxicol. 2016 Nov;36(11):1486-95. doi: 10.1002/jat.3307. Epub 2016 Mar 2.
9
Metabolomics screening identifies reduced L-carnitine to be associated with progressive emphysema.
Clin Sci (Lond). 2016 Feb;130(4):273-87. doi: 10.1042/CS20150438. Epub 2015 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验