Suppr超能文献

双侧伏隔核网络的独特预处理特征可预测重度抑郁症患者对抗抑郁药的早期反应。

Distinctive pretreatment features of bilateral nucleus accumbens networks predict early response to antidepressants in major depressive disorder.

机构信息

Department of Psychosomatics & Psychiatry, Institute of Psychosomatic Medicine, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.

Department of Neurology, Institute of Neuropsychology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.

出版信息

Brain Imaging Behav. 2018 Aug;12(4):1042-1052. doi: 10.1007/s11682-017-9773-0.

Abstract

The pretreatment neuroimaging markers from the resting-state brain network that could predict the early response to antidepressants are still unclear. The aim of the present study was to identify the performance of reward network features for discriminating patients with a dampened response to antidepressants. A total of 81 major depressive disorder (MDD) patients (44 patients with treatment-responsive depression (RD) and 37 patients with non-responding depression (NRD)) and 43 healthy controls (HC) underwent resting-state functional magnetic resonance imaging scans and clinical estimates. Bilateral nucleus accumbens (NAcc)-based networks were constructed for further functional connectivity (FC) analysis. The FC of the right superior frontal gyrus (SFG) (area under curve (AUC) = 0.837) and left parahippocampus (AUC = 0.770) within the left NAcc reward network, as well as the FC of the left SFG (AUC = 0.827) within the right NAcc reward network, could distinguish NRD subjects from RD subjects relatively well. Taken together, when considering the distinctive connectional pattern of the bilateral reward circuits, the synthetical differentiating effect was achieved to an optimal performance for discriminating NRD patients (AUC = 0.869), with balanced sensitivity (0.838) and specificity (0.818). The distinct pretreatment characteristics of the reward network make specific contributions to the early response to antidepressants and establish a promising imaging predictor for the classification of early efficacy.

摘要

目前尚不清楚哪些静息态脑网络的预处理神经影像学标志物可预测抗抑郁药的早期反应。本研究旨在确定奖励网络特征在区分抗抑郁药反应迟钝的患者方面的表现。共有 81 名重度抑郁症(MDD)患者(44 名治疗反应性抑郁(RD)患者和 37 名无反应性抑郁(NRD)患者)和 43 名健康对照者(HC)接受了静息态功能磁共振成像扫描和临床评估。构建双侧伏隔核(NAcc)为基础的网络以进行进一步的功能连接(FC)分析。左 NAcc 奖励网络内右侧额上回(SFG)(曲线下面积(AUC)= 0.837)和左侧海马旁回(AUC = 0.770)的 FC,以及右 NAcc 奖励网络内左侧 SFG(AUC = 0.827)的 FC,可相对较好地区分 NRD 受试者和 RD 受试者。综合考虑双侧奖励回路的独特连接模式,综合区分效果达到了区分 NRD 患者的最佳性能(AUC = 0.869),具有平衡的敏感性(0.838)和特异性(0.818)。奖励网络的独特预处理特征为抗抑郁药的早期反应做出了特定贡献,并为早期疗效的分类建立了有前途的影像学预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验