Suppr超能文献

基于快速双回波 ramped 混合编码磁共振的衰减校正(dRHE-MRAC)用于 PET/MR。

Rapid dual-echo ramped hybrid encoding MR-based attenuation correction (dRHE-MRAC) for PET/MR.

机构信息

Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

出版信息

Magn Reson Med. 2018 Jun;79(6):2912-2922. doi: 10.1002/mrm.26953. Epub 2017 Oct 2.

Abstract

PURPOSE

In this study, we propose a rapid acquisition for MR-based attenuation correction (MRAC) in positron emission tomography (PET)/MR imaging, in which an ultrashort echo time (UTE) image and an out-of-phase echo image are obtained within a single rapid scan (35 s) at high spatial resolution (1 mm ), which allows accurate estimation of a pseudo CT image using 4-class tissue classification (discrete bone, discrete air, continuous fat, and continuous water).

METHODS

In dual-echo ramped hybrid encoding (dRHE), a UTE echo is directly followed by a second out-of-phase echo, in which hybrid spatial encoding combining single-point imaging and 3-dimensional radial frequency encoding is used to improve the quality of both images. Two-point Dixon reconstruction is used to estimate fat- and water-separated images, and UTE images are used to estimate bone. Air and bone segmentation is improved by using multiple UTE images with an advanced hybrid-encoding scheme that allows reconstruction of multiple UTE images. To evaluate the proposed method, dRHE-MRAC PET/MR brain imaging was performed in 10 subjects. Dice coefficients and PET reconstruction errors relative to CT-based attenuation correction were compared with existing system MRAC approaches.

RESULTS

In dRHE-MRAC, the Dice coefficients for soft tissue, air, and bone were respectively 0.95 ± 0.01, 0.62 ± 0.06, and 0.78 ± 0.05, which was a significantly improved result compared with existing approaches. In most brain regions, dRHE-MRAC showed significantly reduced PET error (less than 1%) with P values less than 0.05.

CONCLUSIONS

Dual-echo ramped hybrid encoding enables rapid and robust imaging for MRAC with a very rapid acquisition. Magn Reson Med 79:2912-2922, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

本研究提出一种快速获取正电子发射断层扫描(PET)/磁共振(MR)成像中基于磁共振的衰减校正(MRAC)的方法,该方法在单次快速扫描(35 s)中以高空间分辨率(1mm)获得超短回波时间(UTE)图像和反相回波图像,从而可以使用 4 类组织分类(离散骨、离散空气、连续脂肪和连续水)准确估计伪 CT 图像。

方法

在双回波斜坡混合编码(dRHE)中,UTE 回波直接跟随第二个反相回波,其中采用单点成像和 3 维径向频率编码相结合的混合空间编码来提高两种图像的质量。两点 Dixon 重建用于估计脂肪和水分离图像,UTE 图像用于估计骨。空气和骨分割通过使用允许重建多个 UTE 图像的先进混合编码方案来改进多个 UTE 图像。为了评估所提出的方法,对 10 例受试者进行了 dRHE-MRAC PET/MR 脑成像。与现有的系统 MRAC 方法相比,比较了基于 Dice 系数和相对 CT 衰减校正的 PET 重建误差。

结果

在 dRHE-MRAC 中,软组织、空气和骨的 Dice 系数分别为 0.95±0.01、0.62±0.06 和 0.78±0.05,与现有的方法相比,这是一个显著改善的结果。在大多数脑区,dRHE-MRAC 显著降低了 PET 误差(小于 1%),P 值小于 0.05。

结论

双回波斜坡混合编码可实现快速、稳健的 MRAC 成像,具有非常快速的采集。磁共振医学 79:2912-2922,2018。© 2017 年国际磁共振学会。

相似文献

1
Rapid dual-echo ramped hybrid encoding MR-based attenuation correction (dRHE-MRAC) for PET/MR.
Magn Reson Med. 2018 Jun;79(6):2912-2922. doi: 10.1002/mrm.26953. Epub 2017 Oct 2.
4
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Radiology. 2018 Feb;286(2):676-684. doi: 10.1148/radiol.2017170700. Epub 2017 Sep 19.
5
MR-based PET attenuation correction using a combined ultrashort echo time/multi-echo Dixon acquisition.
Med Phys. 2020 Jul;47(7):3064-3077. doi: 10.1002/mp.14180. Epub 2020 May 11.
6
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.
9
Simultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction.
Int J Cardiovasc Imaging. 2016 Jan;32(1):61-71. doi: 10.1007/s10554-015-0661-7. Epub 2015 Apr 22.
10
Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.
J Nucl Med. 2015 Apr;56(4):635-41. doi: 10.2967/jnumed.114.148817. Epub 2015 Mar 5.

引用本文的文献

1
PET/MRI in colorectal and anal cancers: an update.
Abdom Radiol (NY). 2023 Dec;48(12):3558-3583. doi: 10.1007/s00261-023-03897-y. Epub 2023 Apr 16.
3
Attenuation correction for human PET/MRI studies.
Phys Med Biol. 2020 Dec 2;65(23):23TR02. doi: 10.1088/1361-6560/abb0f8.
4
5
Characterization of hardware-related spatial distortions for IR-PETRA pulse sequence using a brain specific phantom.
MAGMA. 2021 Apr;34(2):213-228. doi: 10.1007/s10334-020-00863-3. Epub 2020 Jul 6.
7
Inversion recovery zero echo time (IR-ZTE) imaging for direct myelin detection in human brain: a feasibility study.
Quant Imaging Med Surg. 2020 May;10(5):895-906. doi: 10.21037/qims.2020.04.13.
8
MR-based PET attenuation correction using a combined ultrashort echo time/multi-echo Dixon acquisition.
Med Phys. 2020 Jul;47(7):3064-3077. doi: 10.1002/mp.14180. Epub 2020 May 11.
9
Self-Navigated Three-Dimensional Ultrashort Echo Time Technique for Motion-Corrected Skull MRI.
IEEE Trans Med Imaging. 2020 Sep;39(9):2869-2880. doi: 10.1109/TMI.2020.2978405. Epub 2020 Mar 4.
10
PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques.
Med Phys. 2020 Feb;47(2):790-811. doi: 10.1002/mp.13943. Epub 2020 Jan 1.

本文引用的文献

1
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Radiology. 2018 Feb;286(2):676-684. doi: 10.1148/radiol.2017170700. Epub 2017 Sep 19.
4
A rapid and robust gradient measurement technique using dynamic single-point imaging.
Magn Reson Med. 2017 Sep;78(3):950-962. doi: 10.1002/mrm.26481. Epub 2016 Oct 3.
7
Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging.
Phys Med Biol. 2015 Oct 21;60(20):8047-65. doi: 10.1088/0031-9155/60/20/8047. Epub 2015 Sep 30.
8
Ramped hybrid encoding for improved ultrashort echo time imaging.
Magn Reson Med. 2016 Sep;76(3):814-25. doi: 10.1002/mrm.25977. Epub 2015 Sep 18.
10
Zero TE MR bone imaging in the head.
Magn Reson Med. 2016 Jan;75(1):107-14. doi: 10.1002/mrm.25545. Epub 2015 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验