Suppr超能文献

相似文献

1
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Radiology. 2018 Feb;286(2):676-684. doi: 10.1148/radiol.2017170700. Epub 2017 Sep 19.
2
Rapid dual-echo ramped hybrid encoding MR-based attenuation correction (dRHE-MRAC) for PET/MR.
Magn Reson Med. 2018 Jun;79(6):2912-2922. doi: 10.1002/mrm.26953. Epub 2017 Oct 2.
3
Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.
Neuroimage. 2016 Apr 15;130:123-133. doi: 10.1016/j.neuroimage.2016.01.060. Epub 2016 Feb 4.
5
MRI-based attenuation correction for brain PET/MRI based on anatomic signature and machine learning.
Phys Med Biol. 2019 Jan 7;64(2):025001. doi: 10.1088/1361-6560/aaf5e0.
6
A deep learning approach for F-FDG PET attenuation correction.
EJNMMI Phys. 2018 Nov 12;5(1):24. doi: 10.1186/s40658-018-0225-8.
9
Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction.
J Nucl Med. 2019 Mar;60(3):429-435. doi: 10.2967/jnumed.118.209288. Epub 2018 Aug 30.

引用本文的文献

2
SASWISE-UE: Segmentation and synthesis with interpretable scalable ensembles for uncertainty estimation.
Comput Biol Med. 2025 Aug;194:110258. doi: 10.1016/j.compbiomed.2025.110258. Epub 2025 Jun 2.
3
POUR-Net: A Population-Prior-Aided Over-Under-Representation Network for Low-Count PET Attenuation Map Generation.
IEEE Trans Med Imaging. 2025 Apr;44(4):1699-1710. doi: 10.1109/TMI.2024.3514925. Epub 2025 Apr 3.
5
Mapping the knowledge landscape of the PET/MR domain: a multidimensional bibliometric analysis.
Eur J Nucl Med Mol Imaging. 2025 Apr;52(5):1805-1821. doi: 10.1007/s00259-024-07043-8. Epub 2025 Jan 4.
6
Automated tooth segmentation in magnetic resonance scans using deep learning - A pilot study.
Dentomaxillofac Radiol. 2025 Jan 1;54(1):12-18. doi: 10.1093/dmfr/twae059.
7
Deep learning and AI in reducing magnetic resonance imaging scanning time: advantages and pitfalls in clinical practice.
Pol J Radiol. 2024 Sep 13;89:e443-e451. doi: 10.5114/pjr/192822. eCollection 2024.
9
Feasibility of deep learning algorithm in diagnosing lumbar central canal stenosis using abdominal CT.
Skeletal Radiol. 2025 May;54(5):947-957. doi: 10.1007/s00256-024-04796-z. Epub 2024 Sep 9.

本文引用的文献

2
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
3
A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients.
Neuroimage. 2017 Feb 15;147:346-359. doi: 10.1016/j.neuroimage.2016.12.010. Epub 2016 Dec 14.
4
5
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.
IEEE Trans Med Imaging. 2016 May;35(5):1252-1261. doi: 10.1109/TMI.2016.2548501. Epub 2016 Mar 30.
7
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.
8
A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.
Med Image Anal. 2016 May;30:108-119. doi: 10.1016/j.media.2016.01.005. Epub 2016 Feb 6.
10
Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging.
Phys Med Biol. 2015 Oct 21;60(20):8047-65. doi: 10.1088/0031-9155/60/20/8047. Epub 2015 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验