Zaidi Hussain, Hoffman Elizabeth A, Shetty Savera J, Bekiranov Stefan, Auble David T
From the School of Medicine Research Computing, University of Virginia and.
the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908.
J Biol Chem. 2017 Nov 24;292(47):19338-19355. doi: 10.1074/jbc.M117.796441. Epub 2017 Sep 26.
Formaldehyde-cross-linking underpins many of the most commonly used experimental approaches in the chromatin field, especially in capturing site-specific protein-DNA interactions. Extending such assays to assess the stability and binding kinetics of protein-DNA interactions is more challenging, requiring absolute measurements with a relatively high degree of physical precision. We previously described an experimental framework called the cross-linking kinetics (CLK) assay, which uses time-dependent formaldehyde-cross-linking data to extract kinetic parameters of chromatin binding. Many aspects of formaldehyde behavior in cells are unknown or undocumented, however, and could potentially affect CLK data analyses. Here, we report biochemical results that better define the properties of formaldehyde-cross-linking in budding yeast cells. These results have the potential to inform interpretations of "standard" chromatin assays, including chromatin immunoprecipitation. Moreover, the chemical complexity we uncovered resulted in the development of an improved method for measuring binding kinetics with the CLK approach. Optimum conditions included an increased formaldehyde concentration and more robust glycine-quench conditions. Notably, we observed that formaldehyde-cross-linking rates can vary dramatically for different protein-DNA interactions Some interactions were cross-linked much faster than the macromolecular interactions, making them suitable for kinetic analysis. For other interactions, we found the cross-linking reaction occurred on the same time scale or slower than binding dynamics; for these interactions, it was sometimes possible to compute the equilibrium-binding constant but not binding on- and off-rates. This improved method yields more accurate binding kinetics estimates on the minute time scale.
甲醛交联是染色质领域许多最常用实验方法的基础,尤其是在捕获位点特异性蛋白质 - DNA 相互作用方面。将此类分析扩展到评估蛋白质 - DNA 相互作用的稳定性和结合动力学更具挑战性,需要具有相对较高物理精度的绝对测量。我们之前描述了一种称为交联动力学(CLK)分析的实验框架,它利用随时间变化的甲醛交联数据来提取染色质结合的动力学参数。然而,甲醛在细胞中的许多行为尚不清楚或未被记录,并且可能会影响 CLK 数据分析。在这里,我们报告了生化结果,这些结果更好地定义了芽殖酵母细胞中甲醛交联的特性。这些结果有可能为包括染色质免疫沉淀在内的“标准”染色质分析的解释提供信息。此外,我们发现的化学复杂性导致开发了一种改进的方法,用于用 CLK 方法测量结合动力学。最佳条件包括增加甲醛浓度和更有效的甘氨酸淬灭条件。值得注意的是,我们观察到不同蛋白质 - DNA 相互作用的甲醛交联速率可能有很大差异。一些相互作用的交联速度比大分子相互作用快得多,使其适合进行动力学分析。对于其他相互作用,我们发现交联反应发生的时间尺度与结合动力学相同或更慢;对于这些相互作用,有时可以计算平衡结合常数,但无法计算结合和解离速率。这种改进的方法在分钟时间尺度上产生更准确的结合动力学估计。