Suppr超能文献

一种异常的孔蛋白样通道的功能分析,该通道导入几丁质用于……中的替代碳代谢

Functional analysis of an unusual porin-like channel that imports chitin for alternative carbon metabolism in .

作者信息

Soysa H Sasimali M, Schulte Albert, Suginta Wipa

机构信息

From the Biochemistry-Electrochemistry Research Unit, Institute of Science and.

the School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand.

出版信息

J Biol Chem. 2017 Nov 24;292(47):19328-19337. doi: 10.1074/jbc.M117.812321. Epub 2017 Sep 27.

Abstract

have the genetic potential to use chitin as a carbon source in the absence of glucose, importing it via the chitin-uptake channel ChiP for processing by the glucosamine catabolic pathway. The gene is usually not expressed when are grown on glucose-enriched nutrients, providing a general regulatory mechanism for the pathway. ChiP is unusual in that it is homologous to porins and monomeric instead of trimeric, the typical form of sugar-specific channels, making it unclear how this channel operates. We recently reported that ChiP could form a stable channel in lipid membranes and that the channel is specific for chitooligosaccharides. This report describes the biophysical nature of sugar-channel interactions and the kinetics of sugar association and dissociation. Titrating ChiP with chitohexaose resulted in protein fluorescence enhancement in a concentration-dependent manner, yielding a binding constant of 2.9 × 10 m, consistent with the value of 2.5 × 10 m obtained from isothermal titration microcalorimetry. Analysis of the integrated heat change suggested that the binding process was endothermic and driven by entropy. Single-channel recordings confirmed the voltage dependence of the penetration of chitohexaose molecules into and their release from ChiP. Once inside the pore, the sugar release rate () from the affinity site increased with elevated voltage, regardless of the side of sugar addition. Our findings revealed distinct thermodynamic and kinetic features of the activity of sugar-specific ChiP and advance our knowledge of the physiological possibility of chitin utilization by non-chitinolytic bacteria.

摘要

在缺乏葡萄糖的情况下,具有利用几丁质作为碳源的遗传潜力,通过几丁质摄取通道ChiP将其导入,以便由氨基葡萄糖分解代谢途径进行处理。当在富含葡萄糖的营养物质上生长时,该基因通常不表达,从而为该途径提供了一种通用的调节机制。ChiP不同寻常之处在于它与孔蛋白同源,并且是单体而非三聚体,而三聚体是糖特异性通道的典型形式,这使得该通道的运作方式尚不清楚。我们最近报道,ChiP可以在脂质膜中形成稳定的通道,并且该通道对壳寡糖具有特异性。本报告描述了糖通道相互作用的生物物理性质以及糖结合和解离的动力学。用壳六糖滴定ChiP导致蛋白质荧光以浓度依赖性方式增强,产生的结合常数为2.9×10 m,与等温滴定微量热法获得的2.5×10 m的值一致。对积分热变化的分析表明,结合过程是吸热的且由熵驱动。单通道记录证实了壳六糖分子进入ChiP及其从ChiP释放的电压依赖性。一旦进入孔内,无论糖添加的哪一侧,糖从亲和位点的释放速率()都随着电压升高而增加。我们的研究结果揭示了糖特异性ChiP活性独特的热力学和动力学特征,并推进了我们对非几丁质分解细菌利用几丁质的生理可能性的认识。

相似文献

1
Functional analysis of an unusual porin-like channel that imports chitin for alternative carbon metabolism in .
J Biol Chem. 2017 Nov 24;292(47):19328-19337. doi: 10.1074/jbc.M117.812321. Epub 2017 Sep 27.
2
Identification and Functional Characterization of a Novel OprD-like Chitin Uptake Channel in Non-chitinolytic Bacteria.
J Biol Chem. 2016 Jun 24;291(26):13622-33. doi: 10.1074/jbc.M116.728881. Epub 2016 May 12.
3
Single-channel properties, sugar specificity, and role of chitoporin in adaptive survival of type strain O1.
J Biol Chem. 2020 Jul 10;295(28):9421-9432. doi: 10.1074/jbc.RA120.012921. Epub 2020 May 14.
4
Structural basis for chitin acquisition by marine Vibrio species.
Nat Commun. 2018 Jan 15;9(1):220. doi: 10.1038/s41467-017-02523-y.
5
Probing sugar translocation through maltoporin at the single channel level.
FEBS Lett. 2000 Jul 7;476(3):224-8. doi: 10.1016/s0014-5793(00)01753-1.
6
Effects of H-bonds on sugar binding to chitoporin from Vibrio harveyi.
Biochim Biophys Acta Biomembr. 2019 Mar 1;1861(3):610-618. doi: 10.1016/j.bbamem.2018.12.012. Epub 2018 Dec 19.
8
Channel-closing activity of porins from Escherichia coli in bilayer lipid membranes.
Biochim Biophys Acta. 1986 Nov 6;862(1):57-64. doi: 10.1016/0005-2736(86)90468-2.
9
Chitoporin from Serratia marcescens: recombinant expression, purification and crystallization.
Acta Crystallogr F Struct Biol Commun. 2020 Nov 1;76(Pt 11):536-543. doi: 10.1107/S2053230X20013874. Epub 2020 Oct 29.

引用本文的文献

1
Probing the physiological roles of the extracellular loops of chitoporin from Vibrio campbellii.
Biophys J. 2021 Jun 1;120(11):2124-2137. doi: 10.1016/j.bpj.2021.03.034. Epub 2021 Apr 1.
2
Chitoporin from Serratia marcescens: recombinant expression, purification and crystallization.
Acta Crystallogr F Struct Biol Commun. 2020 Nov 1;76(Pt 11):536-543. doi: 10.1107/S2053230X20013874. Epub 2020 Oct 29.

本文引用的文献

1
Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules.
ACS Nano. 2017 Jun 27;11(6):5465-5473. doi: 10.1021/acsnano.6b08613. Epub 2017 May 12.
2
Correlated trapping of sugar molecules by the trimeric protein channel  chitoporin.
Biochim Biophys Acta. 2016 Dec;1858(12):3032-3040. doi: 10.1016/j.bbamem.2016.09.007. Epub 2016 Sep 14.
3
Identification and Functional Characterization of a Novel OprD-like Chitin Uptake Channel in Non-chitinolytic Bacteria.
J Biol Chem. 2016 Jun 24;291(26):13622-33. doi: 10.1074/jbc.M116.728881. Epub 2016 May 12.
4
Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example.
Biophys J. 2016 Feb 2;110(3):600-611. doi: 10.1016/j.bpj.2015.12.027.
5
Electroosmosis through α-Hemolysin That Depends on Alkali Cation Type.
J Phys Chem Lett. 2014 Dec 18;5(24):4362-7. doi: 10.1021/jz502360c. Epub 2014 Dec 8.
8
Construction and basic characterization of deletion mutants of the genes involved in chitin utilization by Serratia marcescens 2170.
Biosci Biotechnol Biochem. 2014;78(3):524-32. doi: 10.1080/09168451.2014.882755. Epub 2014 May 21.
9
Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. doi: 10.1093/nar/gku316. Epub 2014 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验