From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.
the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.
J Biol Chem. 2017 Nov 17;292(46):19044-19054. doi: 10.1074/jbc.M117.806331. Epub 2017 Oct 2.
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.
核酶(RNRs)催化核苷酸还原为相应的脱氧核苷酸,用于 DNA 的合成和修复。两种不同的机制有助于将所需的电子传递到 RNR 的活性部位。甲酸盐可以直接在活性部位用作还原剂,或者谷氧还蛋白或硫氧还蛋白还原 C 末端半胱氨酸对,然后将电子传递到活性部位。在这里,我们描述了一种新型半胱氨酸丰富的 C 末端结构域(CRD),它存在于微生物中发现的大多数 II 类 RNR 中。我们使用来自细菌的 NrdJd 型 RNR 作为模型酶。我们表明,CRD 参与了更高的寡聚体形成和向活性部位的电子转移。CRD 依赖性的高寡聚体形成,如四聚体和六聚体,是由 dATP 或 dGTP 的添加诱导的,但不是由 dTTP 或 dCTP 诱导的。电子转移是由非常 C 末端的六个半胱氨酸残基的阵列介导的,这些残基也配位了一个锌原子。电子转移也可以在亚基之间发生,这取决于酶的寡聚状态。对该系统的天然还原剂的研究表明,它与谷氧还蛋白或硫氧还蛋白没有相互作用,这表明这种 II 类 RNR 使用不同的电子源。我们的结果表明,CRD 在催化周转中起着至关重要的作用,并且具有潜在的新的末端还原机制,并表明 CRD 对许多 II 类 RNR 的活性很重要。