Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden.
Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Mülheim an der Ruhr, Germany.
Nature. 2018 Nov;563(7731):416-420. doi: 10.1038/s41586-018-0653-6. Epub 2018 Oct 31.
Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis. It is essential for all organisms that use DNA as their genetic material and is a current drug target. Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity. Here we describe a group of RNR proteins in Mollicutes-including Mycoplasma pathogens-that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR-some of which are developing resistance to antibiotics-are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.
核苷酸还原酶 (RNR) 催化了唯一已知的从头途径,用于合成 DNA 所需的所有四种脱氧核苷酸。它是所有使用 DNA 作为遗传物质的生物所必需的,也是当前的药物靶点。自从发现铁是所有真核生物和许多细菌中发现的需氧、I 类 RNR 功能所必需的以来,双核金属位点被认为是产生和稳定催化自由基所必需的,该自由基对于 RNR 活性至关重要。在这里,我们描述了在 Mollicutes 中发现的一组 RNR 蛋白,包括支原体病原体,它们具有一个位于修饰的酪氨酸残基上的独立于金属的稳定自由基。结构、生化和光谱特征揭示了一种稳定的 3,4-二羟基苯丙氨酸 (DOPA) 自由基物种,它可以直接支持体外和体内的核苷酸还原。这一观察结果推翻了在需氧核苷酸还原酶中需要双核金属位点的假设。独立于金属的自由基需要新的自由基生成和稳定机制,这些过程是 RNR 抑制剂的作用靶点。这种 RNR 变体在免疫系统诱导的金属饥饿下可能具有优势。编码这种类型 RNR 的生物体——其中一些对抗生素产生了耐药性——与呼吸道、泌尿道和生殖道疾病有关。进一步研究这种 RNR 家族及其辅因子生成机制将深入了解新的酶化学,并有助于制定对抗利用它的病原体的策略。我们建议将这个 RNR 亚类命名为 Ie 类。