Suppr超能文献

发育中大脑单侧损伤后的运动系统可塑性

Motor system plasticity after unilateral injury in the developing brain.

作者信息

Williams Preston T J A, Jiang Yu-Qiu, Martin John H

机构信息

Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA.

City University of New York Graduate Center, New York, NY, USA.

出版信息

Dev Med Child Neurol. 2017 Dec;59(12):1224-1229. doi: 10.1111/dmcn.13581. Epub 2017 Oct 3.

Abstract

UNLABELLED

In maturity, motor skills depend on the corticospinal tract (CST) and brainstem pathways that together synapse on interneurons and motoneurons in the spinal cord. Descending signals to spinal neurons that mediate voluntary control can be distinguished from peripheral sensory signals, primarily for feedback control. These motor system circuits depend initially on developmental genetic mechanisms to establish their connections and neural activity- and use-dependent synaptic refinement during the early postnatal period to enable motor skills to develop. In this review we consider four key activity-dependent developmental mechanisms that provide insights into how the motor systems establish the proper connections for skilled movement control and how the same mechanisms also inform the mechanisms of motor impairments and developmental plasticity after corticospinal system injury: (1) synaptic competition between the CSTs from each hemisphere; (2) interactions between the CST and spinal cord neurons; (3) synaptic competition between the CST and proprioceptive sensory fibres; and (4) interactions between the developing corticospinal motor system and the rubrospinal tract. Our findings suggest that the corticospinal motor system effectively 'oversees' development of its subcortical targets through synaptic competition and trophic-like interactions and this has important implications for motor impairments after perinatal cortical stroke.

WHAT THIS PAPER ADDS

Neural activity-dependent processes inform the brain and spinal cord response to injury. The corticospinal motor system may 'oversee' development of its downstream subcortical targets through activity, trophic-like interactions, and synaptic competition.

摘要

未标注

在成熟阶段,运动技能依赖于皮质脊髓束(CST)和脑干通路,它们共同作用于脊髓中的中间神经元和运动神经元。向脊髓神经元传递的介导自主控制的下行信号可与外周感觉信号区分开来,主要用于反馈控制。这些运动系统回路最初依赖于发育遗传机制来建立其连接,并在出生后早期通过依赖神经活动和使用的突触精细化来使运动技能得以发展。在本综述中,我们考虑了四种关键的依赖活动的发育机制,这些机制有助于深入了解运动系统如何为熟练的运动控制建立适当的连接,以及相同的机制如何也为皮质脊髓系统损伤后的运动障碍和发育可塑性机制提供信息:(1)每个半球的皮质脊髓束之间的突触竞争;(2)皮质脊髓束与脊髓神经元之间的相互作用;(3)皮质脊髓束与本体感觉纤维之间的突触竞争;以及(4)发育中的皮质脊髓运动系统与红核脊髓束之间的相互作用。我们的研究结果表明,皮质脊髓运动系统通过突触竞争和类似营养的相互作用有效地“监督”其皮质下靶点的发育,这对围产期皮质卒中后的运动障碍具有重要意义。

本文补充内容

依赖神经活动的过程影响大脑和脊髓对损伤的反应。皮质脊髓运动系统可能通过活动、类似营养的相互作用和突触竞争“监督”其下游皮质下靶点的发育。

相似文献

1
Motor system plasticity after unilateral injury in the developing brain.
Dev Med Child Neurol. 2017 Dec;59(12):1224-1229. doi: 10.1111/dmcn.13581. Epub 2017 Oct 3.
2
Motor Cortex Activity Organizes the Developing Rubrospinal System.
J Neurosci. 2015 Sep 30;35(39):13363-74. doi: 10.1523/JNEUROSCI.1719-15.2015.
4
Neuroplasticity of spinal cord injury and repair.
Handb Clin Neurol. 2022;184:317-330. doi: 10.1016/B978-0-12-819410-2.00017-5.
5
Transneuronal Downregulation of the Premotor Cholinergic System After Corticospinal Tract Loss.
J Neurosci. 2018 Sep 26;38(39):8329-8344. doi: 10.1523/JNEUROSCI.3410-17.2018. Epub 2018 Jul 26.
6
The corticospinal system: from development to motor control.
Neuroscientist. 2005 Apr;11(2):161-73. doi: 10.1177/1073858404270843.
8
Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.
Front Neural Circuits. 2017 Jun 29;11:47. doi: 10.3389/fncir.2017.00047. eCollection 2017.
9
Harnessing activity-dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy.
Dev Med Child Neurol. 2011 Sep;53 Suppl 4(Suppl 4):9-13. doi: 10.1111/j.1469-8749.2011.04055.x.

引用本文的文献

1
Narrative Review of the Theoretical-Methodological Foundations of the TREINI Program.
Children (Basel). 2024 Sep 27;11(10):1181. doi: 10.3390/children11101181.
2
Structural networking of the developing brain: from maturation to neurosurgical implications.
Front Neuroanat. 2023 Nov 30;17:1242757. doi: 10.3389/fnana.2023.1242757. eCollection 2023.
3
Linking corticospinal tract activation and upper-limb motor control in adults with cerebral palsy.
Dev Med Child Neurol. 2024 Apr;66(4):523-530. doi: 10.1111/dmcn.15750. Epub 2023 Sep 7.
4
Transcranial magnetic stimulation as a diagnostic and therapeutic tool in cerebral palsy.
Postep Psychiatr Neurol. 2021 Sep;30(3):203-212. doi: 10.5114/ppn.2021.110796. Epub 2021 Nov 26.
5
Spinal cord H-reflex post-activation depression is linked with hand motor control in adults with cerebral palsy.
Clin Neurophysiol. 2023 Apr;148:9-16. doi: 10.1016/j.clinph.2023.01.004. Epub 2023 Jan 25.
6
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery.
Neurosci Bull. 2022 Dec;38(12):1569-1587. doi: 10.1007/s12264-022-00959-x. Epub 2022 Nov 4.
7
Reduced wrist flexor H-reflex excitability is linked with increased wrist proprioceptive error in adults with cerebral palsy.
Front Neurol. 2022 Aug 9;13:930303. doi: 10.3389/fneur.2022.930303. eCollection 2022.
8
Left-Right Locomotor Coordination in Human Neonates.
J Neurosci. 2022 Aug 24;42(34):6566-6580. doi: 10.1523/JNEUROSCI.0612-22.2022. Epub 2022 Jul 13.
9
Autologous cellular therapy for cerebral palsy: a randomized, crossover trial.
Brain Commun. 2022 May 20;4(3):fcac131. doi: 10.1093/braincomms/fcac131. eCollection 2022.

本文引用的文献

1
Control of species-dependent cortico-motoneuronal connections underlying manual dexterity.
Science. 2017 Jul 28;357(6349):400-404. doi: 10.1126/science.aan3721.
2
Skilled Movements Require Non-apoptotic Bax/Bak Pathway-Mediated Corticospinal Circuit Reorganization.
Neuron. 2017 May 3;94(3):626-641.e4. doi: 10.1016/j.neuron.2017.04.019.
3
Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit.
PLoS One. 2016 Sep 27;11(9):e0163775. doi: 10.1371/journal.pone.0163775. eCollection 2016.
5
Motor Cortex Activity Organizes the Developing Rubrospinal System.
J Neurosci. 2015 Sep 30;35(39):13363-74. doi: 10.1523/JNEUROSCI.1719-15.2015.
6
Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools.
J Neurosci. 2014 Mar 19;34(12):4432-41. doi: 10.1523/JNEUROSCI.5332-13.2014.
7
Motor impairment factors related to brain injury timing in early hemiparesis. Part I: expression of upper-extremity weakness.
Neurorehabil Neural Repair. 2014 Jan;28(1):13-23. doi: 10.1177/1545968313500564. Epub 2013 Sep 5.
10
Activity-dependent neurotransmitter respecification.
Nat Rev Neurosci. 2012 Jan 18;13(2):94-106. doi: 10.1038/nrn3154.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验