Williams Preston T J A, Jiang Yu-Qiu, Martin John H
Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA.
City University of New York Graduate Center, New York, NY, USA.
Dev Med Child Neurol. 2017 Dec;59(12):1224-1229. doi: 10.1111/dmcn.13581. Epub 2017 Oct 3.
In maturity, motor skills depend on the corticospinal tract (CST) and brainstem pathways that together synapse on interneurons and motoneurons in the spinal cord. Descending signals to spinal neurons that mediate voluntary control can be distinguished from peripheral sensory signals, primarily for feedback control. These motor system circuits depend initially on developmental genetic mechanisms to establish their connections and neural activity- and use-dependent synaptic refinement during the early postnatal period to enable motor skills to develop. In this review we consider four key activity-dependent developmental mechanisms that provide insights into how the motor systems establish the proper connections for skilled movement control and how the same mechanisms also inform the mechanisms of motor impairments and developmental plasticity after corticospinal system injury: (1) synaptic competition between the CSTs from each hemisphere; (2) interactions between the CST and spinal cord neurons; (3) synaptic competition between the CST and proprioceptive sensory fibres; and (4) interactions between the developing corticospinal motor system and the rubrospinal tract. Our findings suggest that the corticospinal motor system effectively 'oversees' development of its subcortical targets through synaptic competition and trophic-like interactions and this has important implications for motor impairments after perinatal cortical stroke.
Neural activity-dependent processes inform the brain and spinal cord response to injury. The corticospinal motor system may 'oversee' development of its downstream subcortical targets through activity, trophic-like interactions, and synaptic competition.
在成熟阶段,运动技能依赖于皮质脊髓束(CST)和脑干通路,它们共同作用于脊髓中的中间神经元和运动神经元。向脊髓神经元传递的介导自主控制的下行信号可与外周感觉信号区分开来,主要用于反馈控制。这些运动系统回路最初依赖于发育遗传机制来建立其连接,并在出生后早期通过依赖神经活动和使用的突触精细化来使运动技能得以发展。在本综述中,我们考虑了四种关键的依赖活动的发育机制,这些机制有助于深入了解运动系统如何为熟练的运动控制建立适当的连接,以及相同的机制如何也为皮质脊髓系统损伤后的运动障碍和发育可塑性机制提供信息:(1)每个半球的皮质脊髓束之间的突触竞争;(2)皮质脊髓束与脊髓神经元之间的相互作用;(3)皮质脊髓束与本体感觉纤维之间的突触竞争;以及(4)发育中的皮质脊髓运动系统与红核脊髓束之间的相互作用。我们的研究结果表明,皮质脊髓运动系统通过突触竞争和类似营养的相互作用有效地“监督”其皮质下靶点的发育,这对围产期皮质卒中后的运动障碍具有重要意义。
依赖神经活动的过程影响大脑和脊髓对损伤的反应。皮质脊髓运动系统可能通过活动、类似营养的相互作用和突触竞争“监督”其下游皮质下靶点的发育。