Suppr超能文献

手部灵活性背后物种依赖性皮质-运动神经元连接的控制。

Control of species-dependent cortico-motoneuronal connections underlying manual dexterity.

作者信息

Gu Zirong, Kalambogias John, Yoshioka Shin, Han Wenqi, Li Zhuo, Kawasawa Yuka Imamura, Pochareddy Sirisha, Li Zhen, Liu Fuchen, Xu Xuming, Wijeratne H. R. Sagara, Ueno Masaki, Blatz Emily, Salomone Joseph, Kumanogoh Atsushi, Rasin Mladen-Roko, Gebelein Brian, Weirauch Matthew T, Sestan Nenad, Martin John H, Yoshida Yutaka

机构信息

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA.

Department of Cellular, Molecular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA.

出版信息

Science. 2017 Jul 28;357(6349):400-404. doi: 10.1126/science.aan3721.

Abstract

Superior manual dexterity in higher primates emerged together with the appearance of cortico-motoneuronal (CM) connections during the evolution of the mammalian corticospinal (CS) system. Previously thought to be specific to higher primates, we identified transient CM connections in early postnatal mice, which are eventually eliminated by Sema6D-PlexA1 signaling. mutant mice maintain CM connections into adulthood and exhibit superior manual dexterity as compared with that of controls. Last, differing expression in layer 5 of the motor cortex, which is strong in wild-type mice but weak in humans, may be explained by FEZF2-mediated cis-regulatory elements that are found only in higher primates. Thus, species-dependent regulation of expression may have been crucial in the evolution of mammalian CS systems that improved fine motor control in higher primates.

摘要

在哺乳动物皮质脊髓(CS)系统的进化过程中,高等灵长类动物卓越的手部灵巧性与皮质运动神经元(CM)连接的出现同时出现。以前认为CM连接是高等灵长类动物特有的,我们在出生后早期的小鼠中发现了短暂的CM连接,这些连接最终通过Sema6D-PlexA1信号传导被消除。与对照组相比,突变小鼠在成年后仍保持CM连接,并表现出卓越的手部灵巧性。最后,运动皮层第5层中不同的[此处原文似乎缺失具体所指内容]表达,在野生型小鼠中很强但在人类中较弱,这可能由仅在高等灵长类动物中发现的FEZF2介导的顺式调控元件来解释。因此,[此处原文似乎缺失具体所指内容]表达的物种依赖性调控在改善高等灵长类动物精细运动控制的哺乳动物CS系统进化中可能至关重要。

相似文献

1
Control of species-dependent cortico-motoneuronal connections underlying manual dexterity.
Science. 2017 Jul 28;357(6349):400-404. doi: 10.1126/science.aan3721.
2
Semaphorin-Mediated Corticospinal Axon Elimination Depends on the Activity-Induced Bax/Bak-Caspase Pathway.
J Neurosci. 2020 Jul 8;40(28):5402-5412. doi: 10.1523/JNEUROSCI.3190-18.2020. Epub 2020 May 29.
3
Fezf2 expression in layer 5 projection neurons of mature mouse motor cortex.
J Comp Neurol. 2016 Mar 1;524(4):829-45. doi: 10.1002/cne.23875. Epub 2015 Aug 30.
4
Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8136-41. doi: 10.1073/pnas.0803849105. Epub 2008 Jun 3.
5
Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo.
Neuron. 2005 Jan 20;45(2):207-21. doi: 10.1016/j.neuron.2004.12.036.
6
Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons.
Nat Neurosci. 2014 Aug;17(8):1046-54. doi: 10.1038/nn.3757. Epub 2014 Jul 6.
7
TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3041-6. doi: 10.1073/pnas.1016723108. Epub 2011 Feb 1.
8
Plasticity of motor network and function in the absence of corticospinal projection.
Exp Neurol. 2015 May;267:194-208. doi: 10.1016/j.expneurol.2015.03.008. Epub 2015 Mar 17.

引用本文的文献

1
Organization and development of bilateral somatosensory feedback projections in mice.
iScience. 2025 May 21;28(6):112725. doi: 10.1016/j.isci.2025.112725. eCollection 2025 Jun 20.
2
Corticospinal Tract Development, Evolution, and Skilled Movements.
Mov Disord. 2025 Jul;40(7):1221-1232. doi: 10.1002/mds.30199. Epub 2025 Apr 25.
3
The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents.
Front Neural Circuits. 2025 Mar 21;19:1566562. doi: 10.3389/fncir.2025.1566562. eCollection 2025.
5
Amyotrophic lateral sclerosis represents corticomotoneuronal system failure.
Muscle Nerve. 2025 Apr;71(4):499-511. doi: 10.1002/mus.28290. Epub 2024 Nov 7.
6
Selective expansion of motor cortical projections in the evolution of vocal novelty.
bioRxiv. 2024 Oct 24:2024.09.13.612752. doi: 10.1101/2024.09.13.612752.
8
Molecular programs guiding arealization of descending cortical pathways.
Nature. 2024 Oct;634(8034):644-651. doi: 10.1038/s41586-024-07895-y. Epub 2024 Sep 11.
9
Neuronal enhancers fine-tune adaptive circuit plasticity.
Neuron. 2024 Sep 25;112(18):3043-3057. doi: 10.1016/j.neuron.2024.08.002. Epub 2024 Aug 28.
10
Human-specific genetic modifiers of cortical architecture and function.
Curr Opin Genet Dev. 2024 Oct;88:102241. doi: 10.1016/j.gde.2024.102241. Epub 2024 Aug 6.

本文引用的文献

1
A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes.
PLoS Genet. 2016 Apr 8;12(4):e1005981. doi: 10.1371/journal.pgen.1005981. eCollection 2016 Apr.
3
From trans to cis: transcriptional regulatory networks in neocortical development.
Trends Genet. 2015 Feb;31(2):77-87. doi: 10.1016/j.tig.2014.12.004. Epub 2015 Jan 24.
4
Homotypic clusters of transcription factor binding sites: A model system for understanding the physical mechanics of gene expression.
Comput Struct Biotechnol J. 2014 Aug 1;10(17):63-9. doi: 10.1016/j.csbj.2014.07.005. eCollection 2014 Jul.
5
Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons.
Nat Neurosci. 2014 Aug;17(8):1046-54. doi: 10.1038/nn.3757. Epub 2014 Jul 6.
7
Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior.
J Neurosci. 2014 Mar 5;34(10):3674-86. doi: 10.1523/JNEUROSCI.3703-13.2014.
8
Differential joint-specific corticospinal tract projections within the cervical enlargement.
PLoS One. 2013 Sep 18;8(9):e74454. doi: 10.1371/journal.pone.0074454. eCollection 2013.
9
An integrated encyclopedia of DNA elements in the human genome.
Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验