Suppr超能文献

基于纳米光子学的光热管理和热释电发电技术

Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.

机构信息

Department of Electrical and Computer Engineering, National University of Singapore , 4 Engineering Drive 3, Singapore 117583, Singapore.

School of Advanced Materials Science & Engineering, Sungkyunkwan University , Suwon 440-746, Republic of Korea.

出版信息

ACS Nano. 2017 Oct 24;11(10):10568-10574. doi: 10.1021/acsnano.7b06025. Epub 2017 Oct 9.

Abstract

At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (V) and short circuit current (I) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO/Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

摘要

目前,环境余热的收集存在各种局限性,包括缺乏经济可行的材料和创新设计,这些材料和设计可以有效地将低品位热能回收为有用的能量转换。在这项工作中,提出了一种由超材料多层和热释电材料组成的热纳米光子-热释电(TNPh-pyro)方案,该方案协同进行余热排放和光热热电转换。与任何其他热释电配置不同,这种概念设计通过故意采用背反射近红外光来实现余热再利用/回收,从而增强热释电发电,避免过度吸收太阳能,并保持器件的高可见光透明度,从而偏离传统设计。该设计实现了高达 4.1°C 的被动太阳能反射冷却。同时,利用背反射效应的光热热释电性能分别提高了 152%和 146%的开路电压(V)和短路电流(I)。此外,超材料多层内设计的光活性组件(TiO/Cu)为 TNPh-pyro 系统提供了有效的空气污染物光降解功能。最后,在真实的户外环境下,证明了同时进行光热管理和增强太阳能热释电发电的概念验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验