Tenan Simone, Pedrini Paolo, Bragalanti Natalia, Groff Claudio, Sutherland Chris
Vertebrate Zoology Section, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy.
Provincia Autonoma di Trento, Servizio Foreste e Fauna, Via Trener 3, 38100 Trento, Italy.
PLoS One. 2017 Oct 3;12(10):e0185588. doi: 10.1371/journal.pone.0185588. eCollection 2017.
Recently-developed methods that integrate multiple data sources arising from the same ecological processes have typically utilized structured data from well-defined sampling protocols (e.g., capture-recapture and telemetry). Despite this new methodological focus, the value of opportunistic data for improving inference about spatial ecological processes is unclear and, perhaps more importantly, no procedures are available to formally test whether parameter estimates are consistent across data sources and whether they are suitable for integration. Using data collected on the reintroduced brown bear population in the Italian Alps, a population of conservation importance, we combined data from three sources: traditional spatial capture-recapture data, telemetry data, and opportunistic data. We developed a fully integrated spatial capture-recapture (SCR) model that included a model-based test for data consistency to first compare model estimates using different combinations of data, and then, by acknowledging data-type differences, evaluate parameter consistency. We demonstrate that opportunistic data lend itself naturally to integration within the SCR framework and highlight the value of opportunistic data for improving inference about space use and population size. This is particularly relevant in studies of rare or elusive species, where the number of spatial encounters is usually small and where additional observations are of high value. In addition, our results highlight the importance of testing and accounting for inconsistencies in spatial information from structured and unstructured data so as to avoid the risk of spurious or averaged estimates of space use and consequently, of population size. Our work supports the use of a single modeling framework to combine spatially-referenced data while also accounting for parameter consistency.
最近开发的整合源自相同生态过程的多个数据源的方法,通常利用来自明确采样协议的结构化数据(例如,捕获-再捕获和遥测)。尽管有这种新的方法重点,但机会性数据对于改进空间生态过程推断的价值尚不清楚,也许更重要的是,没有可用的程序来正式测试参数估计在不同数据源之间是否一致以及它们是否适合整合。利用在意大利阿尔卑斯山重新引入的具有保护重要性的棕熊种群上收集的数据,我们整合了来自三个来源的数据:传统空间捕获-再捕获数据、遥测数据和机会性数据。我们开发了一个完全整合的空间捕获-再捕获(SCR)模型,该模型包括一个基于模型的数据一致性测试,首先使用不同的数据组合比较模型估计,然后,通过承认数据类型差异,评估参数一致性。我们证明机会性数据自然适合在SCR框架内进行整合,并强调机会性数据对于改进空间利用和种群规模推断的价值。这在稀有或难以捉摸的物种研究中尤为相关,在这些研究中,空间相遇的数量通常很少,而额外的观测具有很高的价值。此外,我们的结果强调了测试和考虑结构化和非结构化数据中空间信息不一致性的重要性,以避免空间利用以及种群规模的虚假或平均估计的风险。我们的工作支持使用单一建模框架来组合空间参考数据,同时也考虑参数一致性。