Graduate Institute of Medical Sciences.
Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
Toxicol Sci. 2017 Dec 1;160(2):217-229. doi: 10.1093/toxsci/kfx183.
We have previously reported that perfluorooctanesulfonate (PFOS) causes cell apoptosis in renal tubular epithelial cells (RTCs). Here, we extend our findings and provide evidence of epithelial-mesenchymal transition (EMT)-associated renal fibrosis caused by PFOS and the protection by l-carnitine. Our results demonstrate that PFOS increased the expression of EMT and renal injury biomarkers (eg, N-cadherin, vimentin, Snail, Kim1, and Lcn2). In addition, PFOS caused EMT induction through Sirt1-mediated PPARγ deacetylation and inactivation. l-carnitine reversed the EMT induction caused by PFOS and alleviated PFOS-mediated increases in cell migration by reactivating PPARγ through the inhibition of Sirt1 activity. The critical role of Sirt1 in this process was validated by using Sirt1 overexpression, resveratrol (a pharmacologic activator of Sirt1), nicotinamide (a Sirt1 inhibitor) and siSirt1. Nicotinamide and siSirt1, but not Sirt1 overexpression and resveratrol, alleviated PFOS-mediated EMT induction, suggesting that increased Sirt1 activity contributed to the alterations. Furthermore, through PPARγ overexpression and pharmacologic interventions, we validated the crucial role of increased PPARγ deacetylation caused by aberrant increased Sirt1 activity in RTC transformation. Similar to PPARγ overexpression, rosiglitazone (a PPARγ agonist) alleviated the effects of PFOS on the EMT-related features, whereas GW9662 (a PPARγ antagonist) mimicked the effects. The protective effect of l-carnitine was also verified in a mouse model of chronic PFOS exposure, in which decreased EMT biomarker levels and renal fibrosis by l-carnitine were observed in Western blot and histological analyses. Accordingly, l-carnitine alleviated EMT-associated renal fibrosis caused by PFOS through a Sirt1- and PPARγ-dependent mechanism.
我们之前曾报道过全氟辛烷磺酸(PFOS)可引起肾小管上皮细胞(RTC)凋亡。在这里,我们扩展了研究结果,并提供了 PFOS 引起的上皮-间充质转化(EMT)相关肾纤维化以及左旋肉碱保护作用的证据。我们的结果表明,PFOS 增加了 EMT 和肾损伤生物标志物(例如 N-钙黏蛋白、波形蛋白、Snail、Kim1 和 Lcn2)的表达。此外,PFOS 通过 Sirt1 介导的 PPARγ去乙酰化和失活引起 EMT 诱导。左旋肉碱通过抑制 Sirt1 活性来重新激活 PPARγ,从而逆转 PFOS 引起的 EMT 诱导,并减轻 PFOS 介导的细胞迁移增加。通过 Sirt1 过表达、白藜芦醇(Sirt1 的药理学激活剂)、烟酰胺(Sirt1 抑制剂)和 siSirt1 验证了 Sirt1 在该过程中的关键作用。烟酰胺和 siSirt1,但不是 Sirt1 过表达和白藜芦醇,减轻了 PFOS 介导的 EMT 诱导,表明 Sirt1 活性的增加导致了这些变化。此外,通过 PPARγ 过表达和药物干预,我们验证了异常增加的 Sirt1 活性引起的 PPARγ 去乙酰化增加在 RTC 转化中的关键作用。与过表达 PPARγ 相似,罗格列酮(PPARγ 激动剂)减轻了 PFOS 对 EMT 相关特征的影响,而 GW9662(PPARγ 拮抗剂)则模拟了这些影响。左旋肉碱的保护作用也在慢性 PFOS 暴露的小鼠模型中得到了验证,在该模型中,Western blot 和组织学分析观察到左旋肉碱降低了 EMT 生物标志物水平和肾纤维化。因此,左旋肉碱通过 Sirt1 和 PPARγ 依赖性机制缓解了 PFOS 引起的 EMT 相关肾纤维化。