Suppr超能文献

影像学在预测功能结局的临床卒中量表中的作用:一项系统评价。

The Role of Imaging in Clinical Stroke Scales That Predict Functional Outcome: A Systematic Review.

作者信息

Soliman Fatima, Gupta Ajay, Delgado Diana, Kamel Hooman, Pandya Ankur

机构信息

Department of Radiology, Weill Cornell Medical College, New York, NY, USA.

Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, NY, USA.

出版信息

Neurohospitalist. 2017 Oct;7(4):169-178. doi: 10.1177/1941874417708128. Epub 2017 May 22.

Abstract

BACKGROUND AND PURPOSE

Numerous stroke scales have been developed to predict functional outcomes following acute ischemic stroke. The goal of this study was to summarize functional outcome scores in stroke that incorporate neuroimaging with those that don't incorporate neuroimaging.

METHODS

Searches were conducted in Ovid MEDLINE, Ovid Embase, and the Cochrane Library Database from inception to January 23, 2015. Additional records were identified by employing the "Cited by" and "View References" features in Scopus. We included studies that described stroke prognosis models or scoring systems that predict functional outcome based on clinical and/or imaging data available on presentation. Score performance was evaluated based on area under the receiver operating characteristic curve (AUC).

RESULTS

A total of 3300 articles were screened, yielding 14 scores that met inclusion criteria. Half (7) of the scores included neuroimaging as a predictor variable. Neuroimaging parameters included infarct size on magnetic resonance diffusion-weighted imaging, infarct size defined by computed tomography hypodensity, and hemodynamic abnormality on perfusion imaging. The modified Rankin Scale at 3 months poststroke was the most common functional outcome reported (13 of 14 scores). The AUCs ranged from 0.64 to 0.84 for scores that included neuroimaging as a predictor and 0.64 to 0.94 for scores that did not include neuroimaging. External validation has been performed for 7 scores.

CONCLUSIONS

Due to the marked heterogeneity in the scores and populations in which they were applied, it is unclear whether current imaging-based scores offer advantages over simpler approaches for predicting poststroke function.

摘要

背景与目的

已开发出众多卒中量表来预测急性缺血性卒中后的功能结局。本研究的目的是总结卒中功能结局评分,包括纳入神经影像学的评分与未纳入神经影像学的评分。

方法

在Ovid MEDLINE、Ovid Embase和Cochrane图书馆数据库中进行检索,检索时间范围从建库至2015年1月23日。通过使用Scopus中的“被引用文献”和“查看特征识别其他记录。我们纳入了描述基于临床表现时可用的临床和/或影像数据预测功能结局的卒中预后模型或评分系统的研究。基于受试者工作特征曲线下面积(AUC)评估评分性能。

结果

共筛选3300篇文章,产生14个符合纳入标准的评分。其中一半(7个)评分将神经影像学作为预测变量。神经影像学参数包括磁共振扩散加权成像上的梗死灶大小、计算机断层扫描低密度定义的梗死灶大小以及灌注成像上的血流动力学异常。卒中后3个月的改良Rankin量表是报告最多的功能结局(14个评分中有13个)。纳入神经影像学作为预测因素的评分的AUC范围为0.64至0.84,未纳入神经影像学的评分的AUC范围为0.64至0.94。已对7个评分进行了外部验证。

结论

由于评分及其应用人群存在显著异质性,目前基于影像学的评分在预测卒中后功能方面是否优于更简单的方法尚不清楚。

相似文献

1
The Role of Imaging in Clinical Stroke Scales That Predict Functional Outcome: A Systematic Review.
Neurohospitalist. 2017 Oct;7(4):169-178. doi: 10.1177/1941874417708128. Epub 2017 May 22.
2
Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.
Stroke. 2003 Aug;34(8):e109-37. doi: 10.1161/01.STR.0000082721.62796.09. Epub 2003 Jul 17.
3
Predicting functional outcome in patients with acute brainstem infarction using deep neuroimaging features.
Eur J Neurol. 2022 Mar;29(3):744-752. doi: 10.1111/ene.15181. Epub 2021 Nov 22.
4
Deep Learning-Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large Vessel Occlusion.
Stroke. 2020 May;51(5):1484-1492. doi: 10.1161/STROKEAHA.119.028101. Epub 2020 Apr 6.
5
Advanced Neuroimaging in Stroke Patient Selection for Mechanical Thrombectomy.
Stroke. 2018 Dec;49(12):3067-3070. doi: 10.1161/STROKEAHA.118.022540.
6
Predictors of Infarct Growth Measured by Apparent Diffusion Coefficient Quantification in Patients with Acute Ischemic Stroke.
World Neurosurg. 2019 Mar;123:e797-e802. doi: 10.1016/j.wneu.2018.12.051. Epub 2018 Dec 24.
7
Predicting stroke outcome using clinical- versus imaging-based scoring system.
J Stroke Cerebrovasc Dis. 2015 Mar;24(3):642-8. doi: 10.1016/j.jstrokecerebrovasdis.2014.10.009. Epub 2014 Oct 30.
8
Infarct volume is a pivotal biomarker after intra-arterial stroke therapy.
Stroke. 2012 May;43(5):1323-30. doi: 10.1161/STROKEAHA.111.639401. Epub 2012 Mar 15.
10
National Institutes of Health Stroke Scale score is an unreliable predictor of perfusion deficits in acute stroke.
Int J Stroke. 2015 Jun;10(4):582-8. doi: 10.1111/ijs.12438. Epub 2015 Apr 6.

引用本文的文献

1
Outcome Prediction Models for Endovascular Treatment of Ischemic Stroke: Systematic Review and External Validation.
Stroke. 2022 Mar;53(3):825-836. doi: 10.1161/STROKEAHA.120.033445. Epub 2021 Nov 4.
2
End-of-Life Care Decision-Making in Stroke.
Front Neurol. 2021 Sep 28;12:702833. doi: 10.3389/fneur.2021.702833. eCollection 2021.

本文引用的文献

1
The THRIVE score predicts symptomatic intracerebral hemorrhage after intravenous tPA administration in SITS-MOST.
Int J Stroke. 2014 Aug;9(6):705-10. doi: 10.1111/ijs.12335. Epub 2014 Jul 15.
2
Heart disease and stroke statistics--2014 update: a report from the American Heart Association.
Circulation. 2014 Jan 21;129(3):e28-e292. doi: 10.1161/01.cir.0000441139.02102.80. Epub 2013 Dec 18.
3
4
THRIVE score predicts ischemic stroke outcomes and thrombolytic hemorrhage risk in VISTA.
Stroke. 2013 Dec;44(12):3365-9. doi: 10.1161/STROKEAHA.113.002794. Epub 2013 Sep 26.
5
THRIVE score predicts outcomes with a third-generation endovascular stroke treatment device in the TREVO-2 trial.
Stroke. 2013 Dec;44(12):3370-5. doi: 10.1161/STROKEAHA.113.002796. Epub 2013 Sep 26.
7
External validation of the ability of the DRAGON score to predict outcome after thrombolysis treatment.
J Clin Neurosci. 2013 Nov;20(11):1635-6. doi: 10.1016/j.jocn.2013.04.023. Epub 2013 Sep 11.
9
Validation of the DRAGON score in 12 stroke centers in anterior and posterior circulation.
Stroke. 2013 Oct;44(10):2718-21. doi: 10.1161/STROKEAHA.113.002033. Epub 2013 Aug 8.
10
Optimizing prediction scores for poor outcome after intra-arterial therapy in anterior circulation acute ischemic stroke.
Stroke. 2013 Dec;44(12):3324-30. doi: 10.1161/STROKEAHA.113.001050. Epub 2013 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验