Suppr超能文献

深度学习衍生的高级神经影像学特征可预测大血管闭塞的临床转归。

Deep Learning-Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large Vessel Occlusion.

机构信息

From the Department of Neurosurgery (H.N., A.I., I.O., M.O., S.M.), Kyoto University Graduate School of Medicine, Japan.

Medical Innovation Center (N.O.), Kyoto University Graduate School of Medicine, Japan.

出版信息

Stroke. 2020 May;51(5):1484-1492. doi: 10.1161/STROKEAHA.119.028101. Epub 2020 Apr 6.

Abstract

Background and Purpose- For patients with large vessel occlusion, neuroimaging biomarkers that evaluate the changes in brain tissue are important for determining the indications for mechanical thrombectomy. In this study, we applied deep learning to derive imaging features from pretreatment diffusion-weighted image data and evaluated the ability of these features in predicting clinical outcomes for patients with large vessel occlusion. Methods- This multicenter retrospective study included patients with anterior circulation large vessel occlusion treated with mechanical thrombectomy between 2013 and 2018. We designed a 2-output deep learning model based on convolutional neural networks (the convolutional neural network model). This model employed encoder-decoder architecture for the ischemic lesion segmentation, which automatically extracted high-level feature maps in its middle layers, and used its information to predict the clinical outcome. Its performance was internally validated with 5-fold cross-validation, externally validated, and the results compared with those from the standard neuroimaging biomarkers Alberta Stroke Program Early CT Score and ischemic core volume. The prediction target was a good clinical outcome, defined as a modified Rankin Scale score at 90-day follow-up of 0 to 2. Results- The derivation cohort included 250 patients, and the validation cohort included 74 patients. The convolutional neural network model showed the highest area under the receiver operating characteristic curve: 0.81±0.06 compared with 0.63±0.05 and 0.64±0.05 for the Alberta Stroke Program Early CT Score and ischemic core volume models, respectively. In the external validation, the area under the curve for the convolutional neural network model was significantly superior to those for the other 2 models. Conclusions- Compared with the standard neuroimaging biomarkers, our deep learning model derived a greater amount of prognostic information from pretreatment neuroimaging data. Although a confirmatory prospective evaluation is needed, the high-level imaging features derived by deep learning may offer an effective prognostic imaging biomarker.

摘要

背景与目的-对于大血管闭塞患者,评估脑组织变化的神经影像学生物标志物对于确定机械血栓切除术的适应证非常重要。在这项研究中,我们应用深度学习从预处理弥散加权图像数据中提取成像特征,并评估这些特征预测大血管闭塞患者临床结局的能力。

方法-这是一项多中心回顾性研究,纳入了 2013 年至 2018 年期间接受机械血栓切除术治疗的前循环大血管闭塞患者。我们设计了一个基于卷积神经网络(卷积神经网络模型)的 2 输出深度学习模型。该模型采用编解码器架构进行缺血性病变分割,自动在其中间层提取高级特征图,并利用其信息预测临床结局。其性能通过 5 折交叉验证进行内部验证,并进行外部验证,结果与标准神经影像学生物标志物 Alberta 卒中项目早期 CT 评分和缺血核心体积进行比较。预测目标是良好的临床结局,定义为 90 天随访时改良 Rankin 量表评分为 0 至 2。

结果-推导队列包括 250 例患者,验证队列包括 74 例患者。卷积神经网络模型的受试者工作特征曲线下面积最高:0.81±0.06,而 Alberta 卒中项目早期 CT 评分和缺血核心体积模型分别为 0.63±0.05 和 0.64±0.05。在外部验证中,卷积神经网络模型的曲线下面积明显优于其他 2 个模型。

结论-与标准神经影像学生物标志物相比,我们的深度学习模型从预处理神经影像学数据中提取了更多的预后信息。尽管需要进行前瞻性验证研究,但深度学习提取的高级影像学特征可能提供一种有效的预后影像学生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验