Suppr超能文献

核壳纳米颗粒中的宽带铈(III)敏化量子剪裁:机理研究与光伏应用

Broadband Ce(III)-Sensitized Quantum Cutting in Core-Shell Nanoparticles: Mechanistic Investigation and Photovoltaic Application.

作者信息

Sun Tianying, Chen Xian, Jin Limin, Li Ho-Wa, Chen Bing, Fan Bo, Moine Bernard, Qiao Xvsheng, Fan Xianping, Tsang Sai-Wing, Yu Siu Fung, Wang Feng

机构信息

Department of Materials Science and Engineering, City University of Hong Kong , 83 Tat Chee Avenue, Hong Kong SAR, China.

City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.

出版信息

J Phys Chem Lett. 2017 Oct 19;8(20):5099-5104. doi: 10.1021/acs.jpclett.7b02245. Epub 2017 Oct 5.

Abstract

Quantum cutting in lanthanide-doped luminescent materials is promising for applications such as solar cells, mercury-free lamps, and plasma panel displays because of the ability to emit multiple photons for each absorbed higher-energy photon. Herein, a broadband Ce-sensitized quantum cutting process in Nd ions is reported though gadolinium sublattice-mediated energy migration in a NaGdF:Ce@NaGdF:Nd@NaYF nanostructure. The Nd ions show downconversion of one ultraviolet photon through two successive energy transitions, resulting in one visible photon and one near-infrared (NIR) photon. A class of NaGdF:Ce@NaGdF:Nd/Yb@NaYF nanoparticles is further developed to expand the spectrum of quantum cutting in the NIR. When the quantum cutting nanoparticles are incorporated into a hybrid crystalline silicon (c-Si) solar cell, a 1.2-fold increase in short-circuit current and a 1.4-fold increase in power conversion efficiency is demonstrated under short-wavelength ultraviolet irradiation. These insights should enhance our ability to control and utilize spectral downconversion with lanthanide ions.

摘要

镧系元素掺杂的发光材料中的量子剪裁在太阳能电池、无汞灯和等离子体平板显示器等应用中具有广阔前景,因为它能够为每个吸收的高能光子发射多个光子。在此,通过在NaGdF:Ce@NaGdF:Nd@NaYF纳米结构中钆亚晶格介导的能量迁移,报道了一种在钕离子中的宽带铈敏化量子剪裁过程。钕离子通过两次连续的能量跃迁将一个紫外光子进行下转换,产生一个可见光光子和一个近红外(NIR)光子。进一步开发了一类NaGdF:Ce@NaGdF:Nd/Yb@NaYF纳米颗粒,以扩展近红外区域的量子剪裁光谱。当将量子剪裁纳米颗粒掺入混合晶体硅(c-Si)太阳能电池中时,在短波长紫外光照射下,短路电流增加了1.2倍,功率转换效率提高了1.4倍。这些见解应能增强我们控制和利用镧系离子进行光谱下转换的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验