University of Toulouse, IRIT, CNRS UMR 5505, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France. Faculté de Chirurgie Dentaire, Université Paul Sabatier, Toulouse, 31059 Cedex 9, France.
Phys Med Biol. 2017 Dec 19;63(1):015020. doi: 10.1088/1361-6560/aa90ff.
Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feret's diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.
根管在锥形束 CT (CBCT)图像上的分割很困难,这是由于噪声水平、分辨率限制、束硬化和牙齿形态变化所致。本研究基于自适应局部阈值方法的图像处理框架,对从离体牙上获取的 CBCT 图像进行了评估。通过专用的配准过程,将其与从同一牙齿上获取的微计算机断层扫描(µCT)图像上高质量分割的牙髓图像进行了比较。根据每个分割牙齿的面积和通过面积和 Feret 直径的根管部分,对其进行了体积和根管部分的评估。结果表明,所提出的方法克服了 CBCT 的局限性,并提供了一种自动和自适应的完整牙髓分割方法。尽管存在轻微的低估(-4,08%),但基于边缘检测的局部阈值分割方法被证明是快速和准确的。在根管面积和直径方面,CBCT 和 µCT 分割之间都存在很强的相关性(分别为 0.98 和 0.88)。我们的研究结果表明,将 CBCT 成像与这种图像处理框架相结合可能有益于实验牙髓学的教学,并可能代表朝着在牙髓腔治疗期间临床使用根管 CBCT 分割的方向迈出的第一步。