Suppr超能文献

基于 Cone-Beam CT 成像的经动脉化疗栓塞术治疗肝脏肿瘤中碘油沉积的定量自动分割:深度学习方法。

Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach.

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.

出版信息

J Vasc Interv Radiol. 2022 Mar;33(3):324-332.e2. doi: 10.1016/j.jvir.2021.12.017. Epub 2021 Dec 16.

Abstract

PURPOSE

To show that a deep learning (DL)-based, automated model for Lipiodol (Guerbet Pharmaceuticals, Paris, France) segmentation on cone-beam computed tomography (CT) after conventional transarterial chemoembolization performs closer to the "ground truth segmentation" than a conventional thresholding-based model.

MATERIALS AND METHODS

This post hoc analysis included 36 patients with a diagnosis of hepatocellular carcinoma or other solid liver tumors who underwent conventional transarterial chemoembolization with an intraprocedural cone-beam CT. Semiautomatic segmentation of Lipiodol was obtained. Subsequently, a convolutional U-net model was used to output a binary mask that predicted Lipiodol deposition. A threshold value of signal intensity on cone-beam CT was used to obtain a Lipiodol mask for comparison. The dice similarity coefficient (DSC), mean squared error (MSE), center of mass (CM), and fractional volume ratios for both masks were obtained by comparing them to the ground truth (radiologist-segmented Lipiodol deposits) to obtain accuracy metrics for the 2 masks. These results were used to compare the model versus the threshold technique.

RESULTS

For all metrics, the U-net outperformed the threshold technique: DSC (0.65 ± 0.17 vs 0.45 ± 0.22, P < .001) and MSE (125.53 ± 107.36 vs 185.98 ± 93.82, P = .005). The difference between the CM predicted and the actual CM was 15.31 mm ± 14.63 versus 31.34 mm ± 30.24 (P < .001), with lesser distance indicating higher accuracy. The fraction of volume present ([predicted Lipiodol volume]/[ground truth Lipiodol volume]) was 1.22 ± 0.84 versus 2.58 ± 3.52 (P = .048) for the current model's prediction and threshold technique, respectively.

CONCLUSIONS

This study showed that a DL framework could detect Lipiodol in cone-beam CT imaging and was capable of outperforming the conventionally used thresholding technique over several metrics. Further optimization will allow for more accurate, quantitative predictions of Lipiodol depositions intraprocedurally.

摘要

目的

展示一种基于深度学习(DL)的、针对常规经动脉化疗栓塞后锥形束 CT 的碘油(Guerbet 制药公司,法国巴黎)分割的自动化模型,其与“地面真实分割”相比,更接近常规基于阈值的模型。

材料和方法

本回顾性分析纳入了 36 名诊断为肝细胞癌或其他实体肝肿瘤的患者,他们在经动脉化疗栓塞术中接受了常规锥形束 CT。半自动分割碘油。随后,使用卷积 U-net 模型输出预测碘油沉积的二值掩模。使用锥形束 CT 上的信号强度阈值获得用于比较的碘油掩模。通过将这两种掩模与地面真实(放射科医生分割的碘油沉积)进行比较,获得两种掩模的准确性度量,以获得两种掩模的狄氏相似系数(DSC)、均方误差(MSE)、质心(CM)和分数体积比。

结果

对于所有指标,U-net 都优于阈值技术:DSC(0.65 ± 0.17 对 0.45 ± 0.22,P <.001)和 MSE(125.53 ± 107.36 对 185.98 ± 93.82,P =.005)。U-net 预测的 CM 与实际 CM 之间的差异为 15.31 mm ± 14.63 对 31.34 mm ± 30.24(P <.001),距离越小表示准确性越高。当前模型预测的体积分数为 [预测的碘油体积]/[地面真实的碘油体积])为 1.22 ± 0.84 对 2.58 ± 3.52(P =.048),分别为当前模型预测和阈值技术的预测。

结论

本研究表明,DL 框架可以在锥形束 CT 成像中检测碘油,并在多个指标上优于常规使用的阈值技术。进一步的优化将允许更准确、定量地预测术中碘油沉积。

相似文献

2
Quantitative assessment of lipiodol deposition after chemoembolization: comparison between cone-beam CT and multidetector CT.
J Vasc Interv Radiol. 2013 Dec;24(12):1837-44. doi: 10.1016/j.jvir.2013.08.017. Epub 2013 Oct 1.
7
Hug sign in intraprocedural cone-beam-CT to predict short-term response to combined treatment of hepatocellular carcinoma.
Radiol Med. 2024 May;129(5):807-816. doi: 10.1007/s11547-024-01805-y. Epub 2024 Mar 21.
8
Lipiodol: a potential direct surrogate for cone-beam computed tomography image guidance in radiotherapy of liver tumor.
Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):834-41. doi: 10.1016/j.ijrobp.2010.12.050. Epub 2011 Mar 4.

引用本文的文献

1
Applications of artificial intelligence in interventional oncology: An up-to-date review of the literature.
Jpn J Radiol. 2025 Feb;43(2):164-176. doi: 10.1007/s11604-024-01668-3. Epub 2024 Oct 2.
2
Artificial intelligence in interventional radiology: state of the art.
Eur Radiol Exp. 2024 May 2;8(1):62. doi: 10.1186/s41747-024-00452-2.

本文引用的文献

1
Use of Artificial Intelligence in Non-Oncologic Interventional Radiology: Current State and Future Directions.
Dig Dis Interv. 2021;5(4):331-337. doi: 10.1055/s-0041-1726300. Epub 2021 Jul 17.
5
Synthetic CT generation from CBCT images via deep learning.
Med Phys. 2020 Mar;47(3):1115-1125. doi: 10.1002/mp.13978. Epub 2020 Jan 13.
6
Accelerating the Translation of Artificial Intelligence From Ideas to Routine Clinical Workflow.
Acad Radiol. 2020 Jan;27(1):121-122. doi: 10.1016/j.acra.2019.08.019.
7
Theranostic application of lipiodol for transarterial chemoembolization in a VX2 rabbit liver tumor model.
Theranostics. 2019 May 27;9(13):3674-3686. doi: 10.7150/thno.32943. eCollection 2019.
8
Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1370-1381. doi: 10.1109/TMI.2018.2823083.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验