Suppr超能文献

利用视网膜厚度图的显著特征自动检测 SD-OCT 图像中的中心凹

Automated detection of foveal center in SD-OCT images using the saliency of retinal thickness maps.

机构信息

School of Information Science and Engineering, University of Jinan, Jinan, 250022, China.

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

出版信息

Med Phys. 2017 Dec;44(12):6390-6403. doi: 10.1002/mp.12614. Epub 2017 Nov 3.

Abstract

PURPOSE

To develop an automated method based on saliency map of the retinal thickness map to determine foveal center in spectral-domain optical coherence tomography (SD-OCT) images.

METHODS

This paper proposes an automatic method for the detection of the foveal center in SD-OCT images. Initially, a retinal thickness map is generated by considering the axial distance between the internal limiting membrane (ILM) and the Bruch's membrane (BM). Both the ILM and BM boundaries are automatically segmented by a known retinal segmentation technique. The macular foveal region is identified as a salient feature in the retinal thickness map, and segmented by the saliency detection method based on a human vision attention model. Finally, the foveal center is identified by searching for the lowest point from the determined macular fovea region.

RESULTS

Experimental results in 39 scans from 35 healthy eyes and 58 scans from 29 eyes diagnosed with several stages of age-related macular degeneration (AMD), from mild or intermediate stages to severe dry or wet stages, demonstrated that the proposed method achieves good performance. The mean radial distance error of the automatically detected foveal center locations when compared to consensus manual determination established by repeated sessions from two expert readers was 52 ± 56 μm for the normal eyes and 73 ± 63 μm for AMD eyes.

CONCLUSIONS

The proposed algorithm was more effective for detecting the foveal center automatically in SD-OCT images than the state-of-art methods.

摘要

目的

开发一种基于视网膜厚度图显著图的自动方法,以确定光谱域光学相干断层扫描(SD-OCT)图像中的中心凹位置。

方法

本文提出了一种用于检测 SD-OCT 图像中心凹的自动方法。首先,通过考虑内界膜(ILM)和 Bruch 膜(BM)之间的轴向距离生成视网膜厚度图。ILM 和 BM 边界均通过已知的视网膜分割技术自动分割。黄斑中心凹区域在视网膜厚度图中被识别为显著特征,并通过基于人类视觉注意模型的显著检测方法进行分割。最后,通过从确定的黄斑中心凹区域搜索最低点来识别中心凹位置。

结果

在 35 只健康眼的 39 次扫描和 29 只患有不同阶段年龄相关性黄斑变性(AMD)的眼的 58 次扫描中的实验结果表明,该方法具有良好的性能。与两位专家读者通过重复多次确定的共识手动定位相比,自动检测到的中心凹位置的平均径向距离误差在正常眼中为 52±56μm,在 AMD 眼中为 73±63μm。

结论

与现有的方法相比,该算法在 SD-OCT 图像中自动检测中心凹的效果更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验