Suppr超能文献

基于深度学习的液体分割和中央凹检测的三维糖尿病性黄斑水肿厚度图

Three-dimensional diabetic macular edema thickness maps based on fluid segmentation and fovea detection using deep learning.

作者信息

Xu Jing-Jing, Zhou Yang, Wei Qi-Jie, Li Kang, Li Zhen-Ping, Yu Tian, Zhao Jian-Chun, Ding Da-Yong, Li Xi-Rong, Wang Guang-Zhi, Dai Hong

机构信息

School of Medicine, Tsinghua University, Beijing 100084, China.

Visionary Intelligence Company Limited, Beijing 100872, China.

出版信息

Int J Ophthalmol. 2022 Mar 18;15(3):495-501. doi: 10.18240/ijo.2022.03.19. eCollection 2022.

Abstract

AIM

To explore a more accurate quantifying diagnosis method of diabetic macular edema (DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness (CRT) and apply it in follow-up of DME patients.

METHODS

Optical coherence tomography (OCT) scans of 229 eyes from 160 patients were collected. We manually annotated cystoid macular edema (CME), subretinal fluid (SRF) and fovea as ground truths. Deep convolution neural networks (DCNNs) were constructed including U-Net, sASPP, HRNetV2-W48, and HRNetV2-W48+Object-Contextual Representation (OCR) for fluid (CME+SRF) segmentation and fovea detection respectively, based on which the thickness maps of CME, SRF and retina were generated and divided by Early Treatment Diabetic Retinopathy Study (ETDRS) grid.

RESULTS

In fluid segmentation, with the best DCNN constructed and loss function, the dice similarity coefficients (DSC) of segmentation reached 0.78 (CME), 0.82 (SRF), and 0.95 (retina). In fovea detection, the average deviation between the predicted fovea and the ground truth reached 145.7±117.8 µm. The generated macular edema thickness maps are able to discover center-involved DME by intuitive morphometry and fluid volume, which is ignored by the traditional definition of CRT>250 µm. Thickness maps could also help to discover fluid above or below the fovea center ignored or underestimated by a single OCT B-scan.

CONCLUSION

Compared to the traditional unidimensional indicator-CRT, 3D macular edema thickness maps are able to display more intuitive morphometry and detailed statistics of DME, supporting more accurate diagnoses and follow-up of DME patients.

摘要

目的

通过展示超越金标准量化指标——中心视网膜厚度(CRT)的详细三维形态测量,探索一种更准确的糖尿病性黄斑水肿(DME)量化诊断方法,并将其应用于DME患者的随访。

方法

收集了160例患者229只眼的光学相干断层扫描(OCT)图像。我们手动将黄斑囊样水肿(CME)、视网膜下液(SRF)和黄斑中心凹标注为真实情况。分别构建了深度卷积神经网络(DCNN),包括U-Net、sASPP、HRNetV2-W48和HRNetV2-W48+对象上下文表示(OCR),用于流体(CME+SRF)分割和黄斑中心凹检测,在此基础上生成CME、SRF和视网膜的厚度图,并按糖尿病视网膜病变早期治疗研究(ETDRS)网格进行划分(分割)。

结果

在流体分割中,使用构建的最佳DCNN和损失函数,分割的骰子相似系数(DSC)分别达到0.78(CME)、0.82(SRF)和0.95(视网膜)。在黄斑中心凹检测中,预测的黄斑中心凹与真实情况之间的平均偏差达到145.7±117.8 µm。生成的黄斑水肿厚度图能够通过直观的形态测量和液体体积发现累及中心的DME,而这是传统CRT>250 µm定义所忽略的。厚度图还有助于发现单幅OCT B扫描所忽略或低估的黄斑中心凹上方或下方的液体。

结论

与传统的一维指标CRT相比,三维黄斑水肿厚度图能够展示更直观的形态测量和DME的详细统计信息,支持对DME患者进行更准确的诊断和随访。

相似文献

本文引用的文献

3
Deep High-Resolution Representation Learning for Visual Recognition.用于视觉识别的深度高分辨率表征学习
IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3349-3364. doi: 10.1109/TPAMI.2020.2983686. Epub 2021 Sep 2.
4
Diabetic Retinopathy Preferred Practice Pattern®.糖尿病视网膜病变首选诊疗模式®
Ophthalmology. 2020 Jan;127(1):P66-P145. doi: 10.1016/j.ophtha.2019.09.025. Epub 2019 Sep 25.
7
8
Automatic macular edema identification and characterization using OCT images.利用 OCT 图像自动识别和描述黄斑水肿。
Comput Methods Programs Biomed. 2018 Sep;163:47-63. doi: 10.1016/j.cmpb.2018.05.033. Epub 2018 May 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验