Suppr超能文献

基于深度学习的液体分割和中央凹检测的三维糖尿病性黄斑水肿厚度图

Three-dimensional diabetic macular edema thickness maps based on fluid segmentation and fovea detection using deep learning.

作者信息

Xu Jing-Jing, Zhou Yang, Wei Qi-Jie, Li Kang, Li Zhen-Ping, Yu Tian, Zhao Jian-Chun, Ding Da-Yong, Li Xi-Rong, Wang Guang-Zhi, Dai Hong

机构信息

School of Medicine, Tsinghua University, Beijing 100084, China.

Visionary Intelligence Company Limited, Beijing 100872, China.

出版信息

Int J Ophthalmol. 2022 Mar 18;15(3):495-501. doi: 10.18240/ijo.2022.03.19. eCollection 2022.

Abstract

AIM

To explore a more accurate quantifying diagnosis method of diabetic macular edema (DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness (CRT) and apply it in follow-up of DME patients.

METHODS

Optical coherence tomography (OCT) scans of 229 eyes from 160 patients were collected. We manually annotated cystoid macular edema (CME), subretinal fluid (SRF) and fovea as ground truths. Deep convolution neural networks (DCNNs) were constructed including U-Net, sASPP, HRNetV2-W48, and HRNetV2-W48+Object-Contextual Representation (OCR) for fluid (CME+SRF) segmentation and fovea detection respectively, based on which the thickness maps of CME, SRF and retina were generated and divided by Early Treatment Diabetic Retinopathy Study (ETDRS) grid.

RESULTS

In fluid segmentation, with the best DCNN constructed and loss function, the dice similarity coefficients (DSC) of segmentation reached 0.78 (CME), 0.82 (SRF), and 0.95 (retina). In fovea detection, the average deviation between the predicted fovea and the ground truth reached 145.7±117.8 µm. The generated macular edema thickness maps are able to discover center-involved DME by intuitive morphometry and fluid volume, which is ignored by the traditional definition of CRT>250 µm. Thickness maps could also help to discover fluid above or below the fovea center ignored or underestimated by a single OCT B-scan.

CONCLUSION

Compared to the traditional unidimensional indicator-CRT, 3D macular edema thickness maps are able to display more intuitive morphometry and detailed statistics of DME, supporting more accurate diagnoses and follow-up of DME patients.

摘要

目的

通过展示超越金标准量化指标——中心视网膜厚度(CRT)的详细三维形态测量,探索一种更准确的糖尿病性黄斑水肿(DME)量化诊断方法,并将其应用于DME患者的随访。

方法

收集了160例患者229只眼的光学相干断层扫描(OCT)图像。我们手动将黄斑囊样水肿(CME)、视网膜下液(SRF)和黄斑中心凹标注为真实情况。分别构建了深度卷积神经网络(DCNN),包括U-Net、sASPP、HRNetV2-W48和HRNetV2-W48+对象上下文表示(OCR),用于流体(CME+SRF)分割和黄斑中心凹检测,在此基础上生成CME、SRF和视网膜的厚度图,并按糖尿病视网膜病变早期治疗研究(ETDRS)网格进行划分(分割)。

结果

在流体分割中,使用构建的最佳DCNN和损失函数,分割的骰子相似系数(DSC)分别达到0.78(CME)、0.82(SRF)和0.95(视网膜)。在黄斑中心凹检测中,预测的黄斑中心凹与真实情况之间的平均偏差达到145.7±117.8 µm。生成的黄斑水肿厚度图能够通过直观的形态测量和液体体积发现累及中心的DME,而这是传统CRT>250 µm定义所忽略的。厚度图还有助于发现单幅OCT B扫描所忽略或低估的黄斑中心凹上方或下方的液体。

结论

与传统的一维指标CRT相比,三维黄斑水肿厚度图能够展示更直观的形态测量和DME的详细统计信息,支持对DME患者进行更准确的诊断和随访。

相似文献

1
Three-dimensional diabetic macular edema thickness maps based on fluid segmentation and fovea detection using deep learning.
Int J Ophthalmol. 2022 Mar 18;15(3):495-501. doi: 10.18240/ijo.2022.03.19. eCollection 2022.
4
Choroidal Thickness in Different Patterns of Diabetic Macular Edema.
J Clin Med. 2022 Oct 19;11(20):6169. doi: 10.3390/jcm11206169.

引用本文的文献

1
Automatic fovea detection and choroid segmentation for choroidal thickness assessment in optical coherence tomography.
Int J Ophthalmol. 2024 Oct 18;17(10):1763-1771. doi: 10.18240/ijo.2024.10.01. eCollection 2024.
2
Bibliometric analysis of artificial intelligence and optical coherence tomography images: research hotspots and frontiers.
Int J Ophthalmol. 2023 Sep 18;16(9):1431-1440. doi: 10.18240/ijo.2023.09.09. eCollection 2023.
3
Artificial intelligence-aided diagnosis and treatment in the field of optometry.
Int J Ophthalmol. 2023 Sep 18;16(9):1406-1416. doi: 10.18240/ijo.2023.09.06. eCollection 2023.
4
Prediction of spherical equivalent refraction and axial length in children based on machine learning.
Indian J Ophthalmol. 2023 May;71(5):2115-2131. doi: 10.4103/IJO.IJO_2989_22.
5
Measurement method of tear meniscus height based on deep learning.
Front Med (Lausanne). 2023 Feb 14;10:1126754. doi: 10.3389/fmed.2023.1126754. eCollection 2023.

本文引用的文献

1
Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
Transl Vis Sci Technol. 2020 Oct 8;9(2):54. doi: 10.1167/tvst.9.2.54. eCollection 2020 Oct.
3
Deep High-Resolution Representation Learning for Visual Recognition.
IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3349-3364. doi: 10.1109/TPAMI.2020.2983686. Epub 2021 Sep 2.
4
Diabetic Retinopathy Preferred Practice Pattern®.
Ophthalmology. 2020 Jan;127(1):P66-P145. doi: 10.1016/j.ophtha.2019.09.025. Epub 2019 Sep 25.
6
Automated segmentation of macular edema in OCT using deep neural networks.
Med Image Anal. 2019 Jul;55:216-227. doi: 10.1016/j.media.2019.05.002. Epub 2019 May 10.
7
RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge.
IEEE Trans Med Imaging. 2019 Aug;38(8):1858-1874. doi: 10.1109/TMI.2019.2901398. Epub 2019 Feb 26.
8
Automatic macular edema identification and characterization using OCT images.
Comput Methods Programs Biomed. 2018 Sep;163:47-63. doi: 10.1016/j.cmpb.2018.05.033. Epub 2018 May 29.
9
Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model.
IEEE J Biomed Health Inform. 2019 Jan;23(1):296-304. doi: 10.1109/JBHI.2018.2810379. Epub 2018 Feb 28.
10
Development of an efficient algorithm for the detection of macular edema from optical coherence tomography images.
Int J Comput Assist Radiol Surg. 2018 Sep;13(9):1369-1377. doi: 10.1007/s11548-018-1795-6. Epub 2018 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验