Xu Jing-Jing, Zhou Yang, Wei Qi-Jie, Li Kang, Li Zhen-Ping, Yu Tian, Zhao Jian-Chun, Ding Da-Yong, Li Xi-Rong, Wang Guang-Zhi, Dai Hong
School of Medicine, Tsinghua University, Beijing 100084, China.
Visionary Intelligence Company Limited, Beijing 100872, China.
Int J Ophthalmol. 2022 Mar 18;15(3):495-501. doi: 10.18240/ijo.2022.03.19. eCollection 2022.
To explore a more accurate quantifying diagnosis method of diabetic macular edema (DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness (CRT) and apply it in follow-up of DME patients.
Optical coherence tomography (OCT) scans of 229 eyes from 160 patients were collected. We manually annotated cystoid macular edema (CME), subretinal fluid (SRF) and fovea as ground truths. Deep convolution neural networks (DCNNs) were constructed including U-Net, sASPP, HRNetV2-W48, and HRNetV2-W48+Object-Contextual Representation (OCR) for fluid (CME+SRF) segmentation and fovea detection respectively, based on which the thickness maps of CME, SRF and retina were generated and divided by Early Treatment Diabetic Retinopathy Study (ETDRS) grid.
In fluid segmentation, with the best DCNN constructed and loss function, the dice similarity coefficients (DSC) of segmentation reached 0.78 (CME), 0.82 (SRF), and 0.95 (retina). In fovea detection, the average deviation between the predicted fovea and the ground truth reached 145.7±117.8 µm. The generated macular edema thickness maps are able to discover center-involved DME by intuitive morphometry and fluid volume, which is ignored by the traditional definition of CRT>250 µm. Thickness maps could also help to discover fluid above or below the fovea center ignored or underestimated by a single OCT B-scan.
Compared to the traditional unidimensional indicator-CRT, 3D macular edema thickness maps are able to display more intuitive morphometry and detailed statistics of DME, supporting more accurate diagnoses and follow-up of DME patients.
通过展示超越金标准量化指标——中心视网膜厚度(CRT)的详细三维形态测量,探索一种更准确的糖尿病性黄斑水肿(DME)量化诊断方法,并将其应用于DME患者的随访。
收集了160例患者229只眼的光学相干断层扫描(OCT)图像。我们手动将黄斑囊样水肿(CME)、视网膜下液(SRF)和黄斑中心凹标注为真实情况。分别构建了深度卷积神经网络(DCNN),包括U-Net、sASPP、HRNetV2-W48和HRNetV2-W48+对象上下文表示(OCR),用于流体(CME+SRF)分割和黄斑中心凹检测,在此基础上生成CME、SRF和视网膜的厚度图,并按糖尿病视网膜病变早期治疗研究(ETDRS)网格进行划分(分割)。
在流体分割中,使用构建的最佳DCNN和损失函数,分割的骰子相似系数(DSC)分别达到0.78(CME)、0.82(SRF)和0.95(视网膜)。在黄斑中心凹检测中,预测的黄斑中心凹与真实情况之间的平均偏差达到145.7±117.8 µm。生成的黄斑水肿厚度图能够通过直观的形态测量和液体体积发现累及中心的DME,而这是传统CRT>250 µm定义所忽略的。厚度图还有助于发现单幅OCT B扫描所忽略或低估的黄斑中心凹上方或下方的液体。
与传统的一维指标CRT相比,三维黄斑水肿厚度图能够展示更直观的形态测量和DME的详细统计信息,支持对DME患者进行更准确的诊断和随访。