Zhao Dongbo, Song Ruiheng, Li Wei, Ma Jing, Dong Hao, Li Shuhua
Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, People's Republic of China.
Kuang Yaming Honors School, Nanjing University , Nanjing 210023, People's Republic of China.
J Chem Theory Comput. 2017 Nov 14;13(11):5231-5239. doi: 10.1021/acs.jctc.7b00380. Epub 2017 Oct 18.
The generalized energy-based fragmentation (GEBF) method is extended to allow calculations of nuclear magnetic resonance (NMR) chemical shifts of macromolecular and condensed-phase systems feasible at a low computational cost. In this approach, NMR shielding constants in a large system are evaluated as a linear combination of the corresponding quantities from a series of small "electrostatically embedded" subsystems. Comparison of NMR shielding constants from the GEBF-X method [where X is an electronic structure method, such as Hartree-Fock (HF), density functional theory (DFT), ...] with those from the conventional quantum chemistry method for two representative systems verifies that the GEBF approach can reproduce the results of the conventional quantum chemistry method very well. This procedure has further been applied to compute NMR shielding constants of a large foldamer and a supramolecular aggregate, and the N shielding constant for CHCN in the CHCl solvent. For the former two systems, the predicted H chemical shifts are in good agreement with the experimental data. For the CHCN/CHCl solution, the N shielding constant of CHCN is evaluated as the ensemble average of up to 200 sufficiently large CHCN/CHCl clusters from either classical or QM/MM (quantum mechanics/molecular mechanics) molecular dynamics (MD) simulations. Our results reveal that the gas-to-solution shift of N (from an isolated CHCN to the CHCN/CHCl solution) based on PM6-DH+/MM MD simulation is in good accord with the experimental value, outperforming those based on classical MD simulation and the previous polarizable continuum model using integral equation formalism (IEF-PCM) study. This study unravels that the generation of representative liquid structures is critical in evaluating the NMR shielding constants of condensed-phase systems.
广义基于能量的碎片化(GEBF)方法得到了扩展,使得以低计算成本计算大分子和凝聚相体系的核磁共振(NMR)化学位移成为可能。在这种方法中,大体系中的NMR屏蔽常数被评估为一系列小的“静电嵌入”子体系相应量的线性组合。对于两个代表性体系,将GEBF-X方法(其中X是一种电子结构方法,如哈特里-福克(HF)、密度泛函理论(DFT)等)得到的NMR屏蔽常数与传统量子化学方法得到的结果进行比较,验证了GEBF方法能够很好地重现传统量子化学方法的结果。该程序进一步应用于计算一个大折叠体和一个超分子聚集体的NMR屏蔽常数,以及CHCl溶剂中CHCN的N屏蔽常数。对于前两个体系,预测的H化学位移与实验数据吻合良好。对于CHCN/CHCl溶液,CHCN的N屏蔽常数被评估为来自经典或QM/MM(量子力学/分子力学)分子动力学(MD)模拟的多达200个足够大的CHCN/CHCl团簇的系综平均值。我们的结果表明,基于PM6-DH+/MM MD模拟的N(从孤立的CHCN到CHCN/CHCl溶液)的气-液位移与实验值吻合良好,优于基于经典MD模拟和先前使用积分方程形式(IEF-PCM)研究的极化连续介质模型的结果。这项研究表明,生成具有代表性的液体结构对于评估凝聚相体系的NMR屏蔽常数至关重要。