Department of Biomedical Engineering, University of California Davis, Davis, CA, USA.
Department of Radiology, University of California Davis, Davis, CA, USA.
Med Phys. 2021 Sep;48(9):4883-4899. doi: 10.1002/mp.15109. Epub 2021 Aug 3.
Designing and optimizing scintillator-based gamma detector using Monte Carlo simulation is of great importance in nuclear medicine and high energy physics. In scintillation detectors, understanding the light transport in the scintillator and the light collection by the photodetector plays a crucial role in achieving high performance. Thus, accurately modeling them is critical.
In previous works, we developed a model to compute crystal reflectance from the crystal 3D surface measurement and store it in look-up tables to be used in the Monte Carlo simulation software GATE. The relative light output comparison showed excellent agreement between simulations and experiments for both polished and rough surfaces in several configurations, that is, without and with reflector. However, when comparing them at the irradiation depth closest to the photodetector face, rough crystals with a reflector overestimated the predicted light output. Investigating the cause of this overestimation, we optimized the LUT algorithm to improve the reflectance computation accuracy, especially for rough surfaces. However, optical Monte Carlo simulations carried out with these newly generated LUTs still overestimate the light output. Based on previous observations, one probable cause is the erroneous assumption of perfect couplings between the reflector and crystal and between the crystal and photodetector, which likely results in an important overestimation of the light output compared to experimental values. In practice, several factors could degrade it. Here, we investigated possible suboptimal optical experimental configurations that could lead to a degraded light collection when using Teflon or ESR reflectors coupled to the crystal with air or grease. We generated look-up tables with a mixture of air and grease and showed the effect of three possible sources of light loss: the presence of a small gap between the crystal and the reflector edges close to the photodetector face, the infiltration of grease in the crystal-reflector coupling, and the presence of inhomogeneities in the photodetector-crystal interface.
The strongest effect is linked to the presence of a small gap of grease between the edges of the reflector material and the crystal (light loss of 10%-12% for 0.2 mm gap). The optical grease infiltrating the crystal-reflector air coupling decreases the light output, depending on the infiltration's extent and the amount of grease infiltrated. Five percent of air in the crystal-photodetector coupling can cause a light output decrease of 2% to 4%. The individual and combined effect of these advanced models can explain the discrepancy of the relative light output obtained with ESR in simulations and experiments. With Teflon, the study indicates that the light output loss strongly depends on the reflectance deterioration caused by grease absorption.
Our results indicate that when studying scintillation detector performance with different finishes, performing simulations in ideal coupling conditions can lead to light output overestimation. To perform an accurate light output comparison and ultimately have a reliable detector performance estimation, all potential sources of practical limitations must be carefully considered. To broadly enable high-fidelity modeling, we developed an interface for users to compute their own LUTs, using their surface, scintillator, and reflector characteristics.
使用蒙特卡罗模拟设计和优化基于闪烁体的伽马探测器在核医学和高能物理学中具有重要意义。在闪烁体探测器中,了解闪烁体中的光传输和光电探测器的光收集对于实现高性能至关重要。因此,准确建模至关重要。
在以前的工作中,我们开发了一种模型,用于从晶体 3D 表面测量中计算晶体反射率,并将其存储在查找表中,以便在蒙特卡罗模拟软件 GATE 中使用。对于几种配置(即没有反射器和有反射器)的抛光和粗糙表面,模拟与实验之间的相对光输出比较显示出极好的一致性。然而,当在最接近光电探测器表面的照射深度进行比较时,带有反射器的粗糙晶体高估了预测的光输出。研究这种高估的原因,我们优化了 LUT 算法以提高反射率计算的准确性,特别是对于粗糙表面。然而,使用这些新生成的 LUT 进行的光学蒙特卡罗模拟仍然高估了光输出。基于以前的观察结果,一个可能的原因是反射器与晶体之间以及晶体与光电探测器之间的完美耦合的错误假设,这可能导致与实验值相比,光输出的重要高估。实际上,有几个因素可能会降低它。在这里,我们研究了可能的次优光学实验配置,这些配置可能会导致使用与空气或油脂耦合的 Teflon 或 ESR 反射器与晶体结合时光收集的退化。我们使用空气和油脂的混合物生成了查找表,并展示了三种可能的光损耗源的影响:靠近光电探测器表面的晶体和反射器边缘之间存在小间隙,油脂渗透到晶体-反射器耦合中,以及光电探测器-晶体界面存在不均匀性。
最强的影响与反射器材料边缘与晶体之间存在小的油脂间隙(0.2 毫米间隙时光损耗 10%-12%)有关。渗透到晶体-反射器空气耦合中的光学油脂会降低光输出,具体取决于渗透程度和渗透的油脂量。晶体-光电探测器耦合中 5%的空气会导致光输出降低 2%至 4%。这些高级模型的单独和组合效应可以解释 ESR 在模拟和实验中获得的相对光输出的差异。对于 Teflon,研究表明光输出损耗强烈取决于油脂吸收引起的反射率恶化。
我们的结果表明,当使用不同的表面处理研究闪烁体探测器性能时,在理想的耦合条件下进行模拟可能会导致光输出高估。为了进行准确的光输出比较,并最终对探测器性能进行可靠估计,必须仔细考虑所有潜在的实际限制源。为了广泛实现高保真建模,我们开发了一个接口,供用户使用他们的表面、闪烁体和反射器特性来计算自己的 LUT。