Yang Jianghua, Zhang Xiaowei, Zhang Wanwan, Sun Jingying, Xie Yuwei, Zhang Yimin, Burton G Allen, Yu Hongxia
State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China.
Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China.
PLoS One. 2017 Oct 4;12(10):e0185697. doi: 10.1371/journal.pone.0185697. eCollection 2017.
Incompleteness and inaccuracy of DNA barcode databases is considered an important hindrance to the use of metabarcoding in biodiversity analysis of zooplankton at the species-level. Species barcoding by Sanger sequencing is inefficient for organisms with small body sizes, such as zooplankton. Here mitochondrial cytochrome c oxidase I (COI) fragment barcodes from 910 freshwater zooplankton specimens (87 morphospecies) were recovered by a high-throughput sequencing platform, Ion Torrent PGM. Intraspecific divergence of most zooplanktons was < 5%, except Branchionus leydign (Rotifer, 14.3%), Trichocerca elongate (Rotifer, 11.5%), Lecane bulla (Rotifer, 15.9%), Synchaeta oblonga (Rotifer, 5.95%) and Schmackeria forbesi (Copepod, 6.5%). Metabarcoding data of 28 environmental samples from Lake Tai were annotated by both an indigenous database and NCBI Genbank database. The indigenous database improved the taxonomic assignment of metabarcoding of zooplankton. Most zooplankton (81%) with barcode sequences in the indigenous database were identified by metabarcoding monitoring. Furthermore, the frequency and distribution of zooplankton were also consistent between metabarcoding and morphology identification. Overall, the indigenous database improved the taxonomic assignment of zooplankton.
DNA条形码数据库的不完整性和不准确被认为是在浮游动物物种水平生物多样性分析中使用宏条形码技术的一个重要障碍。对于像浮游动物这样体型较小的生物,通过桑格测序进行物种条形码分析效率低下。在这里,通过高通量测序平台Ion Torrent PGM从910个淡水浮游动物标本(87个形态物种)中获得了线粒体细胞色素c氧化酶I(COI)片段条形码。大多数浮游动物的种内差异小于5%,但莱迪枝角水蚤(轮虫,14.3%)、细长三肢轮虫(轮虫,11.5%)、泡形单趾轮虫(轮虫,15.9%)、长圆疣毛轮虫(轮虫,5.95%)和福布斯温剑水蚤(桡足类,6.5%)除外。来自太湖的28个环境样本的宏条形码数据通过一个本地数据库和NCBI Genbank数据库进行注释。本地数据库提高了浮游动物宏条形码分类的准确性。本地数据库中具有条形码序列的大多数浮游动物(81%)通过宏条形码监测得以识别。此外,浮游动物的频率和分布在宏条形码和形态学鉴定之间也保持一致。总体而言,本地数据库提高了浮游动物的分类准确性。
Mar Environ Res. 2021-8
Environ Pollut. 2022-1-1
PLoS One. 2016-7-6
Appl Microbiol Biotechnol. 2024-12
Environ Sci Technol. 2015-6-18
Nucleic Acids Res. 2015-3-11
Proc Natl Acad Sci U S A. 2015-2-17
Mol Biol Evol. 2013-10-16
J Invertebr Pathol. 2013-9-29