Luitz Manuel P, Bomblies Rainer, Zacharias Martin
Physik Department, T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science, Munich, Germany.
Physik Department, T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science, Munich, Germany.
Biophys J. 2017 Oct 3;113(7):1466-1474. doi: 10.1016/j.bpj.2017.08.008.
Limited proteolysis of RNase-A yields a short N-terminal S-peptide segment and the larger S-protein. Binding of S-peptide to S-protein results in the formation of an enzymatically active RNase-S protein. S-peptide undergoes a transition from intrinsic disorder to an ordered helical state upon association with S-protein to form RNase-S and is an excellent model system to study coupled folding and binding. To better understand the dynamics of the RNases-S complex and its isolated partners, comparative molecular dynamics simulations have been performed. In agreement with experiment, we find significant conformational fluctuations of the isolated S-peptide compatible with a disordered regime and only little residual helical structure. In the RNase-S complex, the N-terminal helix of S-peptide unfolds and refolds repeatedly on the microsecond timescale, indicating that the α-helical structure is only part of the equilibrium regime for these residues whereas the C-terminal residues are confined to the helical conformation that is found in the x-ray structure. This is also in line with systematic, in silico Alanine scanning free-energy simulations, which indicate that the major contribution to complex stability emerges from the C-terminal helical turn, consisting of residues 8-13 in S-peptide whereas the N-terminal S-peptide residues 1-7 make only minor contributions. Comparative simulations of S-protein in the presence and absence of S-peptide reveal that the isolated S-protein is significantly more flexible than in the complex, and undergoes a global pincerlike conformational change that narrows the S-peptide binding cleft. The narrowed binding cleft adds a barrier for complex formation likely influencing the binding kinetics. This conformational change is reversed by S-peptide association, which also stabilizes conformational fluctuations in S-protein. Such global motions associated with binding are also likely to play a role for other coupled peptide folding and binding processes at peptide binding regions on protein surfaces.
对核糖核酸酶 A 进行有限的蛋白酶解会产生一个短的 N 端 S 肽段和较大的 S 蛋白。S 肽与 S 蛋白结合会导致形成具有酶活性的核糖核酸酶 - S 蛋白。S 肽与 S 蛋白结合形成核糖核酸酶 - S 时会从内在无序状态转变为有序的螺旋状态,是研究耦合折叠和结合的极佳模型系统。为了更好地理解核糖核酸酶 - S 复合物及其分离的组分的动力学,我们进行了比较分子动力学模拟。与实验结果一致,我们发现分离的 S 肽存在显著的构象波动,符合无序状态,仅有少量残余螺旋结构。在核糖核酸酶 - S 复合物中,S 肽的 N 端螺旋在微秒时间尺度上反复展开和重新折叠,表明α - 螺旋结构只是这些残基平衡状态的一部分,而 C 端残基则局限于 X 射线结构中发现的螺旋构象。这也与系统的计算机丙氨酸扫描自由能模拟结果一致,该模拟表明复合物稳定性的主要贡献来自 C 端螺旋转角,由 S 肽中的 8 - 13 位残基组成,而 N 端 S 肽残基 1 - 7 的贡献较小。有无 S 肽存在时 S 蛋白的比较模拟表明,分离的 S 蛋白比在复合物中显著更灵活,并且经历一种整体的钳状构象变化,使 S 肽结合裂隙变窄。变窄的结合裂隙为复合物形成增加了一个障碍,可能影响结合动力学。这种构象变化通过 S 肽的结合而逆转,S 肽结合也稳定了 S 蛋白中的构象波动。这种与结合相关的整体运动也可能在蛋白质表面肽结合区域的其他耦合肽折叠和结合过程中发挥作用。