Zhang Jing-Yun, Ma Jun, Yu Pei, Tang Guang-Jie, Li Chun-Jun, Yu De-Min, Zhang Qiu-Mei
Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University300070 Tianjin, China.
Am J Transl Res. 2017 Sep 15;9(9):3935-3949. eCollection 2017.
High serum beta 2 glycoprotein I (β2GPI) is associated with complications of type 2 diabetes mellitus (DM), and especially microvascular disorders. In contrast, reduced β2GPI (Rβ2GPI) can prevent diabetic vascular injury. This study aimed to investigate the protective function of Rβ2GPI in DM vascular disorders, and to assess the under lying mechanisms. High glucose-induced injury in human umbilical vein endothelial cells (HUVECs) was used to model hyperglycemia. Alow concentration of Rβ2GPI (0.5 μM), but not β2GPI, mitigated high glucose-induced cell injury. High glucose decreased miR-21 expression and Akt phosphorylation at 6 h, but facilitated their expression at 48 h. Moreover, high glucose decreased phosphatase and tensin homolog deleted on chromosome ten(PTEN) expression at 6 h, but facilitatedits expression at 48 h. Importantly, by promoting miR-21 expression, Rβ2GPI mitigated high glucose-induced PTEN expression, reduced Akt phosphorylation and nitric oxide synthase activity, and increased cyclooxygenase-2 activity and cell loss. Similar to Rβ2GPI, an miR-21 mimic (1 pM) and PTEN inhibition (1 μM bpV, or PTEN silencing) exerted protective action, while an Akt signaling pathway inhibitor (LY294002, 1 μM) aborted the effect of Rβ2GPI on high glucose-induced cell injury. Finally, Rβ2GPI inhibited high glucose-induced apoptosis via a mitochondria-dependent pathway. These data reveal that Rβ2GPI exerts protective action in high glucose-induced HUVEC injury. The mechanism is related to the miR-21-PTEN-Akt pathway and mitochondria-dependent apoptosis. This study provides data supporting the therapeutic effect of Rβ2GPI in diabetic vascular injury.
血清β2糖蛋白I(β2GPI)水平升高与2型糖尿病(DM)并发症尤其是微血管病变相关。相反,β2GPI水平降低(Rβ2GPI)可预防糖尿病血管损伤。本研究旨在探讨Rβ2GPI在糖尿病血管病变中的保护作用,并评估其潜在机制。采用高糖诱导的人脐静脉内皮细胞(HUVECs)损伤来模拟高血糖状态。低浓度的Rβ2GPI(0.5μM)而非β2GPI可减轻高糖诱导的细胞损伤。高糖在6小时时降低miR-21表达和Akt磷酸化,但在48小时时促进其表达。此外,高糖在6小时时降低第10号染色体上缺失的磷酸酶和张力蛋白同源物(PTEN)表达,但在48小时时促进其表达。重要的是,通过促进miR-21表达,Rβ2GPI减轻了高糖诱导的PTEN表达,降低了Akt磷酸化和一氧化氮合酶活性,并增加了环氧合酶-2活性和细胞损失。与Rβ2GPI类似,miR-21模拟物(1 pM)和PTEN抑制(1μM bpV或PTEN沉默)发挥了保护作用,而Akt信号通路抑制剂(LY294002,1μM)消除了Rβ2GPI对高糖诱导的细胞损伤的作用。最后,Rβ2GPI通过线粒体依赖性途径抑制高糖诱导的细胞凋亡。这些数据表明,Rβ2GPI在高糖诱导的HUVEC损伤中发挥保护作用。其机制与miR-21-PTEN-Akt途径和线粒体依赖性凋亡有关。本研究提供了支持Rβ2GPI对糖尿病血管损伤治疗作用的数据。