Suppr超能文献

用于减少城市森林碳抵消生命周期评估不确定性的高分辨率遥感技术。

High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

作者信息

Tigges Jan, Lakes Tobia

机构信息

Geoinformation Science Lab, Department of Geography, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.

出版信息

Carbon Balance Manag. 2017 Oct 4;12(1):17. doi: 10.1186/s13021-017-0085-x.

Abstract

BACKGROUND

Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany.

MAIN TEXT

Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time.

CONCLUSIONS

Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.

摘要

背景

城市森林通过储存和固存大量碳来减少温室气体排放。然而,很少有研究考虑城市森林的局部尺度以有效评估其潜在的长期碳抵消能力。缺乏精确、一致且最新的森林详细信息对长期预测构成挑战。因此,本综述旨在识别城市森林碳抵消评估中的不确定性,并讨论高分辨率遥感的最新进展能在多大程度上减少此类不确定性。我们通过进行广泛的文献综述以及结合德国柏林城市森林碳抵消的遥感和生命周期评估的案例研究来实现这一目标。

正文

与传统的土地利用/覆盖分类方法相比,高分辨率遥感及其方法的最新进展足以提供关于城市树冠、单株树木指标、物种和年龄结构的更精确细节。这些区域范围内一致的细节可以更新生命周期清单,以便进行更精确的未来预测。通过从分辨率不断提高的遥感数据中获取更多特征,可以进一步提高分类精度,但关于这一主题的初步研究表明,明智地选择特征已经能够提供足够的数据,避免冗余并实现更高效的数据处理。我们来自柏林的案例研究可以将遥感单株树种用作生命周期评估的一致清单。然而,由于缺乏生长、死亡率和种植数据,我们不得不做出假设,从而在长期预测中产生了不确定性。关于时间变化和可靠的长期估计,需要更多关注来检测树木逐渐生长、修剪以及种植和死亡率的突然变化。因此,应加强使用高分辨率遥感进行精确的长期城市生态监测,特别是考虑到气候变化影响日益增加的情况。这对于校准和验证城市森林碳抵消的近期预测非常重要,因为迄今为止这些预测几乎没有涉及更长的时间框架。此外,更高分辨率的城市森林碳估计遥感可以改进向上扩展方法,首次应将其扩展以获得更精确的全球估计。

结论

通过为科学和专业从业者提供更标准化的评估,可以使城市森林碳抵消更具相关性,而高分辨率遥感数据可用性的增加和数据处理方面的进展恰好能够做到这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/762f/5628095/e004034ab0f5/13021_2017_85_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验