Instituto Nacional de Pesquisas Espaciais (INPE), Av dos Astronautas, 1758, 12227-010, São José dos Campos, SP, Brazil.
Universidade Federal dos Vales do Jequitinhonha e Mucuri. Campus JK. Rodovia MGT 367 - Km 583, n° 5000, Alto da Jacuba, 39100-000, Diamantina, MG, Brazil.
Sci Data. 2023 Sep 30;10(1):668. doi: 10.1038/s41597-023-02575-4.
The Amazon Forest, the largest contiguous tropical forest in the world, stores a significant fraction of the carbon on land. Changes in climate and land use affect total carbon stocks, making it critical to continuously update and revise the best estimates for the region, particularly considering changes in forest dynamics. Forest inventory data cover only a tiny fraction of the Amazon region, and the coverage is not sufficient to ensure reliable data interpolation and validation. This paper presents a new forest above-ground biomass map for the Brazilian Amazon and the associated uncertainty both with a resolution of 250 meters and baseline for the satellite dataset the year of 2016 (i.e., the year of the satellite observation). A significant increase in data availability from forest inventories and remote sensing has enabled progress towards high-resolution biomass estimates. This work uses the largest airborne LiDAR database ever collected in the Amazon, mapping 360,000 km through transects distributed in all vegetation categories in the region. The map uses airborne laser scanning (ALS) data calibrated by field forest inventories that are extrapolated to the region using a machine learning approach with inputs from Synthetic Aperture Radar (PALSAR), vegetation indices obtained from the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, and precipitation information from the Tropical Rainfall Measuring Mission (TRMM). A total of 174 field inventories geolocated using a Differential Global Positioning System (DGPS) were used to validate the biomass estimations. The experimental design allowed for a comprehensive representation of several vegetation types, producing an above-ground biomass map varying from a maximum value of 518 Mg ha, a mean of 174 Mg ha, and a standard deviation of 102 Mg ha. This unique dataset enabled a better representation of the regional distribution of the forest biomass and structure, providing further studies and critical information for decision-making concerning forest conservation, planning, carbon emissions estimate, and mechanisms for supporting carbon emissions reductions.
亚马逊森林是世界上最大的连续热带森林,储存了大量的陆地碳。气候和土地利用的变化会影响总碳储量,因此不断更新和修正该地区的最佳估计值至关重要,特别是考虑到森林动态的变化。森林清查数据仅涵盖了亚马逊地区的一小部分,而且覆盖率不足以确保可靠的数据插值和验证。本文提出了一种新的巴西亚马逊地区森林地上生物量地图及其相关不确定性,分辨率为 250 米,基准为 2016 年(即卫星观测年)的卫星数据集。森林清查和遥感数据的可用性显著增加,使得高分辨率生物量估算取得了进展。这项工作利用了亚马逊地区有史以来最大的机载激光雷达数据库,通过分布在该地区所有植被类型中的横截面对 36 万公里进行了测绘。该地图使用了机载激光扫描(ALS)数据,这些数据是通过对森林清查进行校准的,然后通过机器学习方法将其外推到该地区,输入包括合成孔径雷达(PALSAR)、从中分辨率成像光谱仪(MODIS)卫星获得的植被指数以及热带降雨测量任务(TRMM)的降水信息。共有 174 个使用差分全球定位系统(DGPS)定位的实地清查用于验证生物量估计值。该实验设计允许对几种植被类型进行全面代表,生成的地上生物量地图的变化范围从最大值 518 Mg ha 到平均值 174 Mg ha 到标准偏差 102 Mg ha。这个独特的数据集使得对森林生物量和结构的区域分布有了更好的表示,为进一步的研究和决策提供了关键信息,这些决策涉及森林保护、规划、碳排放估计以及支持碳排放减少的机制。