Department of Materials Science and Engineering and Optoelectronic Convergence Research Center, Chonnam National University , Gwangju 61186, Republic of Korea.
Department of Physics and Astronomy and Wright Center for Photovoltaic Innovation and Commercialization, University of Toledo , Toledo, Ohio 43606, United States.
ACS Appl Mater Interfaces. 2017 Oct 25;9(42):36733-36744. doi: 10.1021/acsami.7b09266. Epub 2017 Oct 16.
Earth-abundant, copper-zinc-tin-sulfide (CZTS), kesterite, is an attractive absorber material for thin-film solar cells (TFSCs). However, the open-circuit voltage deficit (V-deficit) resulting from a high recombination rate at the buffer/absorber interface is one of the major challenges that must be overcome to improve the performance of kesterite-based TFSCs. In this paper, we demonstrate the relationship between device parameters and performances for chemically deposited CdS buffer/CZTS-based heterojunction TFSCs as a function of buffer layer thickness, which could change the CdS/CZTS interface conditions such as conduction band or valence band offsets, to gain deeper insight and understanding about the V-deficit behavior from a high recombination rate at the CdS buffer/kesterite interface. Experimental results show that device parameters and performances are strongly dependent on the CdS buffer thickness. We postulate two meaningful consequences: (i) Device parameters were improved up to a CdS buffer thickness of 70 nm, whereas they deteriorated at a thicker CdS buffer layer. The V-deficit in the solar cells improved up to a CdS buffer thickness of 92 nm and then deteriorated at a thicker CdS buffer layer. (ii) The minimum values of the device parameters were obtained at 70 nm CdS thickness in the CZTS TFSCs. Finally, the highest conversion efficiency of 8.77% (V: 494 mV, J: 34.54 mA/cm, and FF: 51%) is obtained by applying a 70 nm thick CdS buffer to the CuZnSn(S,Se) absorber layer.
在丰富的地球资源中,铜锌锡硫(CZTS),也称纤锌矿,是薄膜太阳能电池(TFSCs)中一种有吸引力的吸收材料。然而,在缓冲层/吸收层界面处由于高复合率导致的开路电压亏损(V 亏损)是必须克服的主要挑战之一,以提高基于纤锌矿的 TFSCs 的性能。在本文中,我们展示了化学沉积的 CdS 缓冲层/CZTS 基异质结 TFSCs 的器件参数与性能之间的关系,该关系随缓冲层厚度变化,这种变化可以改变 CdS/CZTS 界面条件,如导带或价带偏移,以从 CdS 缓冲层/纤锌矿界面处的高复合率获得对 V 亏损行为的更深入的洞察和理解。实验结果表明,器件参数和性能强烈依赖于 CdS 缓冲厚度。我们假设两个有意义的结论:(i)在 CdS 缓冲厚度为 70nm 时,器件参数得到改善,而在较厚的 CdS 缓冲层时,器件参数恶化。太阳能电池中的 V 亏损在 CdS 缓冲厚度为 92nm 时得到改善,而在较厚的 CdS 缓冲层时则恶化。(ii)在 CZTS TFSCs 中,在 70nm CdS 厚度下获得了器件参数的最小值。最后,通过在 CuZnSn(S,Se)吸收层上施加 70nm 厚的 CdS 缓冲层,获得了最高 8.77%的转换效率(V:494mV,J:34.54mA/cm,FF:51%)。