Arockiya Dass Kaviya Tracy, Hossain M Khalid, Marasamy Latha
Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, QRO, México.
Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, 1349, Bangladesh.
Sci Rep. 2024 Jan 17;14(1):1473. doi: 10.1038/s41598-024-51711-6.
CuZnSn(S,Se) is a non-toxic, earth-abundant photovoltaic absorber. However, its efficiency is limited by a large open circuit voltage (V) deficit occurring due to its antisite defects and improper band alignment with toxic CdS buffer. Therefore, finding an absorber and non-toxic buffers that reduce V deficit is crucial. Herein, for the first time, AgBaTiSe is proposed as an alternative absorber using SCAPS-1D wherein a new class of alkaline earth metal chalcogenide such as MgS, CaS, SrS, and BaS is applied as buffers, and their characteristics are compared with CdS to identify their potential and suitability. The buffer and absorber properties are elucidated by tuning their thickness, carrier concentration, and defect density. Interestingly, optimization of the buffer's carrier concentration suppressed the barrier height and accumulation of charge carriers at the absorber/buffer interface, leading to efficiencies of 18.81%, 17.17%, 20.6%, 20.85%, 20.08% in MgS, CaS, SrS, BaS, and CdS-based solar cells respectively. Upon optimizing AgBaTiSe MoSe, and interface defects maximum efficiency of > 28% is achieved with less V loss (~ 0.3 V) in all solar cells at absorber's thickness, carrier concentration, and defect density of 1 µm, 10 cm, 10 cm respectively, underscoring the promising nature of AgBaTiSe absorber and new alkaline earth metal chalcogenide buffers in photovoltaics.
铜锌锡硫硒(CuZnSn(S,Se))是一种无毒且在地壳中储量丰富的光伏吸收体。然而,由于其反位缺陷以及与有毒的硫化镉(CdS)缓冲层的能带排列不当,导致其开路电压(V)存在较大损失,从而限制了其效率。因此,寻找能够降低开路电压损失的吸收体和无毒缓冲层至关重要。在此,首次提出将银钡钛硒(AgBaTiSe)作为一种替代吸收体,使用SCAPS - 1D软件进行模拟,其中一类新型的碱土金属硫族化合物,如硫化镁(MgS)、硫化钙(CaS)、硫化锶(SrS)和硫化钡(BaS)被用作缓冲层,并将它们的特性与CdS进行比较,以确定它们的潜力和适用性。通过调整缓冲层的厚度、载流子浓度和缺陷密度来阐明缓冲层和吸收体的性能。有趣的是,优化缓冲层的载流子浓度可抑制吸收体/缓冲层界面处的势垒高度和电荷载流子的积累,分别使得基于MgS、CaS、SrS、BaS和CdS的太阳能电池效率达到18.81%、17.17%、20.6%、20.85%、20.08%。在优化了AgBaTiSe、硒化钼(MoSe)以及界面缺陷后,当吸收体的厚度、载流子浓度和缺陷密度分别为1μm、10¹⁹cm⁻³、10¹⁷cm⁻³时,所有太阳能电池均实现了大于28%的最大效率,且开路电压损失较小(约0.3V),这突出了AgBaTiSe吸收体和新型碱土金属硫族化合物缓冲层在光伏领域的良好前景。