Huang Liang-Feng, Rondinelli James M
Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, United States of America.
J Phys Condens Matter. 2017 Nov 29;29(47):475501. doi: 10.1088/1361-648X/aa9140.
The stabilities of Ni metal and its derived compounds, including oxides, hydroxides, and oxyhydroxides under electrochemical conditions, can be readily predicted from the Ni Pourbaix diagram, where the formation free energies of the involved species are utilized to construct the phase stability map with respect to electrode potential and pH. We calculate and analyze the crystal structures, electronic structures, and thermodynamic energies of Ni metal and its compounds using different exchange-correlation functionals to density-functional-theory (DFT), including the semilocal LDA and GGA density functionals, the nonlocal metaGGA, and the hybrid density functionals. Next, we simulate the corresponding Ni Pourbaix diagrams to compare systematically the performance of the functional to each other and to experimental observations. We show that the structures and energies obtained from experimental databases may not be sufficiently accurate to describe direct electrochemical observations, and we explain how the electronic exchange within the density functionals plays a key role in determining the accuracy of the DFT calculated electronic, thermodynamic, and electrochemical properties. We find that only the hybrid density functional produces reliable results owing to the fractional contribution of exact Fock exchange included therein. Last, based on our accurate Ni Pourbaix diagram, we construct band-gap and magnetic electrochemical maps which can facilitate more experimental measurements and property assessments under variable potential and pH in the future.
在电化学条件下,镍金属及其衍生化合物(包括氧化物、氢氧化物和羟基氧化物)的稳定性可以很容易地从镍的Pourbaix图中预测出来。在该图中,利用所涉及物种的生成自由能来构建关于电极电位和pH值的相稳定性图。我们使用不同的交换关联泛函对密度泛函理论(DFT)计算和分析镍金属及其化合物的晶体结构、电子结构和热力学能量,这些泛函包括半局域的LDA和GGA密度泛函、非局域的metaGGA以及杂化密度泛函。接下来,我们模拟相应的镍Pourbaix图,以系统地比较各泛函之间的性能以及与实验观测结果的对比。我们表明,从实验数据库获得的结构和能量可能不足以准确描述直接的电化学观测结果,并且我们解释了密度泛函中的电子交换如何在确定DFT计算的电子、热力学和电化学性质的准确性方面发挥关键作用。我们发现,由于其中包含精确福克交换的分数贡献,只有杂化密度泛函能产生可靠的结果。最后,基于我们精确的镍Pourbaix图,我们构建了带隙和磁电化学图,这有助于未来在可变电位和pH值下进行更多的实验测量和性质评估。