Langmuir. 2018 Oct 16;34(41):12259-12269. doi: 10.1021/acs.langmuir.8b02219. Epub 2018 Oct 4.
Density functional theory (DFT) calculations have been widely used to predict the activity of catalysts based on the free energies of reaction intermediates. The incorporation of the state of the catalyst surface under the electrochemical operating conditions while constructing the free-energy diagram is crucial, without which even trends in activity predictions could be imprecisely captured. Surface Pourbaix diagrams indicate the surface state as a function of the pH and the potential. In this work, we utilize error-estimation capabilities within the Bayesian ensemble error functional with van der Waals correlations exchange correlation functional as an ensemble approach to propagate the uncertainty associated with the adsorption energetics in the construction of Pourbaix diagrams. Within this approach, surface-transition phase boundaries are no longer sharp and are therefore associated with a finite width. We determine the surface phase diagram for several transition metals under reaction conditions and electrode potentials relevant for the oxygen reduction reaction. We observe that our surface phase predictions for most predominant species are in good agreement with cyclic voltammetry experiments and prior DFT studies. We use the OH* intermediate for comparing adsorption characteristics on Pt(111), Pt(100), Pd(111), Ir(111), Rh(111), and Ru(0001) since it has been shown to have a higher prediction efficiency relative to O*, and find the trend Ru > Rh > Ir > Pt > Pd for (111) metal facets, where Ru binds OH* the strongest. We robustly predict the likely surface phase as a function of reaction conditions by associating confidence values for quantifying the confidence in predictions within the Pourbaix diagram. We define a confidence quantifying metric, using which certain experimentally observed surface phases and peak assignments can be better rationalized. The probabilistic approach enables a more accurate determination of the surface structure and can readily be incorporated in computational studies for better understanding the catalyst surface under operating conditions.
密度泛函理论(DFT)计算已广泛用于根据反应中间体的自由能预测催化剂的活性。在构建自由能图时,纳入催化剂表面在电化学操作条件下的状态至关重要,否则即使在活性预测趋势方面也可能无法准确捕捉到。表面 Pourbaix 图表示了表面状态与 pH 值和电位的关系。在这项工作中,我们利用贝叶斯集合误差泛函中的误差估计能力,并结合范德华相关交换相关泛函作为一种集合方法,来传播与构建 Pourbaix 图中吸附能相关的不确定性。在这种方法中,表面转变相界不再是尖锐的,因此与有限的宽度相关联。我们在与氧还原反应相关的反应条件和电极电位下,确定了几种过渡金属的表面相图。我们观察到,我们对大多数主要物种的表面相预测与循环伏安实验和先前的 DFT 研究吻合得很好。我们使用 OH中间体来比较在 Pt(111)、Pt(100)、Pd(111)、Ir(111)、Rh(111)和 Ru(0001)上的吸附特性,因为它已被证明具有更高的预测效率相对于 O,并且我们发现对于(111)金属面,Ru > Rh > Ir > Pt > Pd 的趋势,其中 Ru 与 OH*结合最强。我们通过为 Pourbaix 图中的预测分配置信值来确定与反应条件相关的可能表面相,从而稳健地预测可能的表面相。我们定义了一个置信度量化指标,使用该指标可以更好地解释某些实验观察到的表面相和峰分配。概率方法可以更准确地确定表面结构,并可方便地纳入计算研究中,以更好地了解操作条件下的催化剂表面。