Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States.
Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
Chem Rev. 2022 Jun 22;122(12):10651-10674. doi: 10.1021/acs.chemrev.1c00800. Epub 2022 May 6.
Atomistic simulation of the electrochemical double layer is an ambitious undertaking, requiring quantum mechanical description of electrons, phase space sampling of liquid electrolytes, and equilibration of electrolytes over nanosecond time scales. All models of electrochemistry make different trade-offs in the approximation of electrons and atomic configurations, from the extremes of classical molecular dynamics of a complete interface with point-charge atoms to correlated electronic structure methods of a single electrode configuration with no dynamics or electrolyte. Here, we review the spectrum of simulation techniques suitable for electrochemistry, focusing on the key approximations and accuracy considerations for each technique. We discuss promising approaches, such as enhanced sampling techniques for atomic configurations and computationally efficient beyond density functional theory (DFT) electronic methods, that will push electrochemical simulations beyond the present frontier.
电化学双层的原子级模拟是一项艰巨的任务,需要对电子进行量子力学描述,对液态电解质进行相空间采样,并在纳秒时间尺度上使电解质达到平衡。电化学的所有模型在电子和原子构型的近似处理上都有不同的权衡取舍,从完整界面的经典分子动力学(带有点电荷原子)到单个电极构型的相关电子结构方法(没有动力学或电解质),这两种极端情况都有涉及。在这里,我们回顾了适合电化学的一系列模拟技术,重点讨论了每种技术的关键近似和准确性考虑因素。我们讨论了一些有前途的方法,例如用于原子构型的增强采样技术和具有成本效益的超越密度泛函理论(DFT)的电子方法,这些方法将推动电化学模拟超越当前的前沿。