a The Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Victoria , Australia.
Autophagy. 2018;14(3):534-551. doi: 10.1080/15548627.2017.1385674. Epub 2017 Dec 17.
Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1 mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1 mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1 mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.
自噬是神经元中主要的细胞内分解代谢途径,可消除与衰老和神经退行性变相关的错误折叠蛋白、聚集体和受损细胞器。自噬受 MTOR 依赖性和非依赖性途径调节。越来越多的证据表明,自噬在神经退行性疾病中受到损害,这可能导致神经元中聚集倾向和毒性蛋白的细胞质隔离。遗传或药理学调节自噬以促进错误折叠蛋白的清除,可能是这些疾病有希望的治疗途径。在这里,我们证明了表达与肌萎缩侧索硬化症(ALS)相关的 SOD1 或 TARDBP/TDP-43 突变体的运动神经元细胞中存在强烈的自噬诱导。用利美尼定(一种抗高血压药物和咪唑啉-1 受体激动剂,可诱导自噬)治疗这些细胞,可促进突变 SOD1 的自噬清除和有效的线粒体自噬。利美尼定在突变 SOD1 小鼠中的给药上调了脊髓中的自噬和线粒体自噬,导致可溶性突变 SOD1 水平降低。重要的是,利美尼定增加了 SOD1 小鼠运动神经元中的自噬体丰度,表明对靶细胞有直接作用。尽管体内自噬强烈诱导,但利美尼定仍使 SOD1 小鼠的运动神经元变性和症状进展恶化。这些作用与不依赖自噬途径的不可溶性和错误折叠的 SOD1 物质的积累和聚集增加以及利美尼定治疗的小鼠运动神经元中的严重线粒体耗竭有关。这些发现表明,由于过度的线粒体自噬,利美尼定治疗可能会导致该小鼠模型中的疾病进展和神经退行性变,这意味着在 ALS 中需要有其他策略来有益地刺激自噬。