Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.
Universite de Rennes 1, UMR CNRS 6226, Institut des Sciences, Chimiques de Rennes, 2 avenue du Prof Léon Bernard, 35043, Rennes Cedex, France.
Chemistry. 2018 Mar 15;24(16):3925-3943. doi: 10.1002/chem.201703556. Epub 2017 Dec 4.
Synthesis of biologically active molecules (whether at laboratory or industrial scale) remains a highly appealing area of modern organic chemistry. Nowadays, the need to access original bioactive scaffolds goes together with the desire to improve synthetic efficiency, while reducing the environmental footprint of chemical activities. Long neglected in the field of total synthesis, enantioselective organocatalysis has recently emerged as an environmentally friendly and indispensable tool for the construction of relevant bioactive molecules. Notably, enantioselective Brønsted acid catalysis has offered new opportunities in terms of both retrosynthetic disconnections and controlling stereoselectivity. The present report attempts to provide an overview of enantioselective total or formal syntheses designed around Brønsted acid-catalyzed transformations. To demonstrate the versatility of the reactions promoted and the diversity of the accessible motifs, this Minireview draws a systematic parallel between methods and retrosynthetic analysis. The manuscript is organized according to the main reaction types and the nature of newly-formed bonds.
生物活性分子的合成(无论是在实验室规模还是工业规模上)仍然是现代有机化学中极具吸引力的一个领域。如今,获得原始生物活性支架的需求与提高合成效率、减少化学活动对环境的影响的愿望齐头并进。在手性有机催化领域长期被忽视之后,它最近作为构建相关生物活性分子的一种环保且不可或缺的工具而崭露头角。值得注意的是,手性布朗斯特酸催化在回溯切断和控制立体选择性方面提供了新的机会。本报告试图提供一个围绕布朗斯特酸催化转化的对映选择性全合成或形式合成的概述。为了展示所促进的反应的多功能性和可及的结构的多样性,这个迷你综述在方法和回溯分析之间进行了系统的平行比较。本文根据主要反应类型和新形成键的性质进行组织。