Singh Natalia N, Del Rio-Malewski José Bruno, Luo Diou, Ottesen Eric W, Howell Matthew D, Singh Ravindra N
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA.
Nucleic Acids Res. 2017 Dec 1;45(21):12214-12240. doi: 10.1093/nar/gkx824.
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.
脊髓性肌萎缩症(SMA)是由生存运动神经元1(SMN1)基因的缺失或突变,以及SMN2基因第7外显子的主要跳跃所导致的。唯一获批用于治疗SMA的药物是一种反义寡核苷酸,其靶向位于第7外显子5'剪接位点(5'ss)下游的内含子剪接沉默子N1(ISS-N1)。在此,我们描述了一种通过激活一个隐蔽的5'剪接位点(Cr1)来调节第7外显子剪接的新方法。我们发现在来自SMN1的转录本中Cr1被激活,该SMN1在内含子7的第一个位置携带一个致病性的G到C突变(G1C)。我们表明,激活Cr1的工程化U1小核核糖核酸(eU1s)具有独特的能力来重新编程前体信使核糖核酸(pre-mRNA)剪接,并在第7外显子的3'ss和5'ss处携带广泛致病性突变的SMN1中恢复第7外显子的包含。利用一个剪接偶联翻译报告基因,我们证明由eU1诱导激活Cr1产生的信使核糖核酸(mRNAs)可产生全长的运动神经元生存蛋白(SMN)。我们的研究结果强调了U1小核核糖核蛋白颗粒(U1 snRNP)在剪接调控中的更广泛作用,并揭示了一种恢复SMN第7外显子包含以用于SMA潜在治疗的新方法。