Suppr超能文献

组胺H3受体结构建模的混合方法:作为模型验证工具的多层次评估。

Hybrid approach to structure modeling of the histamine H3 receptor: Multi-level assessment as a tool for model verification.

作者信息

Jończyk Jakub, Malawska Barbara, Bajda Marek

机构信息

Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.

出版信息

PLoS One. 2017 Oct 5;12(10):e0186108. doi: 10.1371/journal.pone.0186108. eCollection 2017.

Abstract

The crucial role of G-protein coupled receptors and the significant achievements associated with a better understanding of the spatial structure of known receptors in this family encouraged us to undertake a study on the histamine H3 receptor, whose crystal structure is still unresolved. The latest literature data and availability of different software enabled us to build homology models of higher accuracy than previously published ones. The new models are expected to be closer to crystal structures; and therefore, they are much more helpful in the design of potential ligands. In this article, we describe the generation of homology models with the use of diverse tools and a hybrid assessment. Our study incorporates a hybrid assessment connecting knowledge-based scoring algorithms with a two-step ligand-based docking procedure. Knowledge-based scoring employs probability theory for global energy minimum determination based on information about native amino acid conformation from a dataset of experimentally determined protein structures. For a two-step docking procedure two programs were applied: GOLD was used in the first step and Glide in the second. Hybrid approaches offer advantages by combining various theoretical methods in one modeling algorithm. The biggest advantage of hybrid methods is their intrinsic ability to self-update and self-refine when additional structural data are acquired. Moreover, the diversity of computational methods and structural data used in hybrid approaches for structure prediction limit inaccuracies resulting from theoretical approximations or fuzziness of experimental data. The results of docking to the new H3 receptor model allowed us to analyze ligand-receptor interactions for reference compounds.

摘要

G蛋白偶联受体的关键作用以及在更好地理解该家族已知受体空间结构方面所取得的重大成就,促使我们对组胺H3受体展开研究,其晶体结构仍未解析。最新的文献数据以及各种软件的可用性,使我们能够构建出比之前发表的模型准确性更高的同源模型。新模型有望更接近晶体结构,因此,它们在潜在配体的设计中更具帮助。在本文中,我们描述了利用多种工具和混合评估生成同源模型的过程。我们的研究纳入了一种混合评估,将基于知识的评分算法与两步基于配体的对接程序相结合。基于知识的评分运用概率论,根据来自实验确定的蛋白质结构数据集的天然氨基酸构象信息来确定全局能量最小值。对于两步对接程序,应用了两个程序:第一步使用GOLD,第二步使用Glide。混合方法通过在一种建模算法中结合各种理论方法而具有优势。混合方法的最大优势在于,当获取额外的结构数据时,它们具有自我更新和自我完善的内在能力。此外,混合方法用于结构预测时所使用的计算方法和结构数据的多样性,限制了由理论近似或实验数据的模糊性导致的不准确。与新的H3受体模型对接的结果,使我们能够分析参考化合物的配体 - 受体相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee75/5629032/05cc55cdb445/pone.0186108.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验