Suppr超能文献

使用低频模态对同源模型进行细化,为基于结构的药物发现构建 G 蛋白偶联受体模型:以 H3 拮抗剂为例。

Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists.

机构信息

Wyeth Research, CN8000, Princeton, New Jersey 08543-8000, USA.

出版信息

Proteins. 2010 Feb 1;78(2):457-73. doi: 10.1002/prot.22571.

Abstract

G Protein-Coupled Receptors (GPCRs) are integral membrane proteins that play important role in regulating key physiological functions, and are targets of about 50% of all recently launched drugs. High-resolution experimental structures are available only for very few GPCRs. As a result, structure-based drug design efforts for GPCRs continue to rely on in silico modeling, which is considered to be an extremely difficult task especially for these receptors. Here, we describe Gmodel, a novel approach for building 3D atomic models of GPCRs using a normal mode-based refinement of homology models. Gmodel uses a small set of relevant low-frequency vibrational modes derived from Random Elastic Network model to efficiently sample the large-scale receptor conformation changes and generate an ensemble of alternative models. These are used to assemble receptor-ligand complexes by docking a known active into each of the alternative models. Each of these is next filtered using restraints derived from known mutation and binding affinity data and is refined in the presence of the active ligand. In this study, Gmodel was applied to generate models of the antagonist form of histamine 3 (H3) receptor. The validity of this novel modeling approach is demonstrated by performing virtual screening (using the refined models) that consistently produces highly enriched hit lists. The models are further validated by analyzing the available SAR related to classical H3 antagonists, and are found to be in good agreement with the available experimental data, thus providing novel insights into the receptor-ligand interactions.

摘要

G 蛋白偶联受体(GPCRs)是一种重要的跨膜蛋白,在调节关键生理功能方面发挥着重要作用,也是大约 50%最近推出的药物的靶点。目前仅有极少数 GPCRs 具有高分辨率的实验结构。因此,基于结构的 GPCR 药物设计工作仍然依赖于计算机模拟,这被认为是一项极其困难的任务,尤其是对于这些受体。在这里,我们描述了 Gmodel,这是一种使用基于正常模式的同源建模 refinement 构建 GPCR 三维原子模型的新方法。Gmodel 使用从随机弹性网络模型中导出的一小部分相关低频振动模式,以有效地采样大规模受体构象变化并生成一系列替代模型。这些模型用于通过将已知的活性配体对接至每个替代模型中,来组装受体-配体复合物。然后,使用来自已知突变和结合亲和力数据的约束条件对每个模型进行过滤,并在存在活性配体的情况下进行细化。在这项研究中,Gmodel 被应用于生成组胺 3(H3)受体拮抗剂形式的模型。通过进行虚拟筛选(使用经过细化的模型),该方法始终产生高度富集的命中列表,证明了这种新型建模方法的有效性。进一步通过分析与经典 H3 拮抗剂相关的可用 SAR 进行模型验证,并发现与可用的实验数据吻合良好,从而为受体-配体相互作用提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验