Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N6N5, Canada.
Bull Math Biol. 2017 Dec;79(12):2954-2985. doi: 10.1007/s11538-017-0358-2. Epub 2017 Oct 5.
Models for population dynamics in rivers and streams have highlighted the importance of spatial and temporal variations for population persistence. We present a novel model that considers the longitudinal variation as introduced by the sinuosity of a meandering river where a main channel is laterally extended to point bars in bends. These regions offer different habitat conditions for aquatic populations and therefore may enhance population persistence. Our model is a nonstandard reaction-advection-diffusion model where the domain of definition consists of the real line (representing the main channel) with periodically added intervals (representing the point bars). We give an existence and uniqueness proof for solutions of the equations. We then study population persistence as the (in-) stability of the trivial solution and population spread as the minimal wave speed of traveling periodic waves. We conduct a sensitivity analysis to highlight the importance of each parameter on the model outcome. We find that sinuosity can enhance species persistence.
河流和溪流中的种群动态模型强调了种群持续存在的空间和时间变化的重要性。我们提出了一种新的模型,该模型考虑了蜿蜒河流的蜿蜒度所带来的纵向变化,其中主河道向弯道中的江心洲侧向扩展。这些区域为水生种群提供了不同的生境条件,因此可以提高种群的持续存在能力。我们的模型是非标准的反应-扩散-扩散模型,其定义域由实数线(表示主河道)和周期性添加的区间(表示江心洲)组成。我们给出了方程解的存在唯一性证明。然后,我们将种群持续存在视为平凡解的(不)稳定性,将种群扩散视为周期性传播波的最小波速。我们进行了敏感性分析,以强调每个参数对模型结果的重要性。我们发现,蜿蜒度可以提高物种的持续存在能力。